

CPE 325: Lab#10 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #10 Tutorial

Synchronous Serial Communications

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective
This tutorial covers communication protocols used in embedded systems, with a focus on
MSP430 family of microcontrollers. We have already covered asynchronous communication in
UART mode and used it to communicate between the TI Experimenter’s board and a
workstation. This tutorial discusses the SPI synchronous communications protocol and its
implementation using the USCI peripheral (in MSP430FG4618) and the USI peripheral (in
MSP430F2013). Specifically, the following topics are covered:

Configuration of the USCI peripheral device for SPI mode
Configuration of the USI peripheral device for SPI mode
Implementation of SPI communication between microcontrollers on the TI Experimenter’s
board
Bluetooth Communication

Notes
All previous tutorials are required for successful completion of this lab, especially the tutorials
introducing the TI experimenter’s board and the Code Composer Studio SDE.

Contents
1 Synchronous Communications .. 2

1.1 Serial Peripheral Interface .. 2

1.1.1 USCI Operation – SPI Mode (MSP430FG4618) .. 3

1.1.2 USI Operation – SPI Mode (MSP430F2013) ... 4

2 Bluetooth Communication .. 14

2.1 What is Bluetooth? ... 14

2.2 Bluetooth Module .. 15

2.3 Pairing Up with Bluetooth Dongle on Workstation ... 17

2.4 Demo Programs .. 21

3 References ... 26

mailto:milenka@uah.edu

CPE 325: Lab#10 Tutorial © A. Milenković 2

1 Synchronous Communications

This tutorial will continue covering communication protocols used in embedded systems, with a
focus on MSP430 family of microcontrollers. We have already covered asynchronous
communication in UART mode and used it to communicate between the TI Experimenter’s
board and a workstation. Asynchronous communication is most useful when communication
must be established between two distinct systems that each have their own clock. Examples of
serial, asynchronous communication systems are USB, RS-232, Firewire (IEEE 1394), and Apple’s
Thunderbolt.

Synchronous communication protocols are best suited for parts of a distinct system when
components can share a clock. Typically, these protocols could be used for communicating
between memory modules, microcontrollers, sensors, and other board-level components.
Today, we will be learning about the SPI communication protocol, the simplest to implement
synchronous communications protocol. The I2C protocol is perhaps more widely implemented,
and you can learn more about it in Davies’ MSP430 Microcontroller Basics on pages 534 – 574.

In this lab we will see how we can develop microcontroller programs for the experimenter
board that involve SPI communications between the two on-board microcontrollers (using a
USCI in SPI mode for the 4618 and using the USI in SPI mode for the 2013) and also implement
RS-232 communications (using a second USCI peripheral on the 4618).

1.1 Serial Peripheral Interface

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock
provided by the master. This is the simplest synchronous communication protocol but faces the
problem of not having a fixed standard like I2C. There are several variations of SPI and one must
read the data sheet of the device closely and ensure that the details of the protocol are well
understood. The Universal Serial Communication Interface (USCI) and Universal Serial Interface
(USI) modules of the MSP430FG4618 and MSP430F2013 respectively, support the Serial
Peripheral Interface (SPI) serial communication mode. One device is the master and the other
the slave. The master provides the clock for both devices and a signal to select (enable) the
slave, but the path followed by the data is identical in each. In its full form SPI requires four
wires (plus ground, which is essential but never counted) and transmits data simultaneously in
both directions (full duplex) between two devices. The general nomenclature for the two data
connections is “master in, slave out” (MISO) and “master out, slave in” (MOSI). This is admirably
clear and makes the functions unambiguous. The two MISO pins should be connected together
and likewise the two MOSI pins. Other terms are widely used, such as SDI, SI, or DIN for serial
data in and SDO, SO, or DOUT for serial data out. In this case you connect an input on one
device to an output on the other. There is similar variety in the names for the clock signal
including SCLK (most popular), SPSCK, and SCK. The final signal selects the slave. This is usually
active low and labeled SS for slave select, CS for chip select, or CE for chip enable. A slave
should drive its output only when SS is active; the output should float at other times in case
another slave is selected. In some modes of SPI, the first bit should be placed on the output
when SS becomes active to start a new transfer.

CPE 325: Lab#10 Tutorial © A. Milenković 3

1.1.1 USCI Operation – SPI Mode (MSP430FG4618)

SPI can be interfaced through the USCI_B0 module present in the MSP430FG4618. The
following signals are used for SPI data exchange in USCI operation:

 UCB0SIMO – Slave in, master out
o Master mode: UCB0SIMO is the data output line.
o Slave mode: UCB0SIMO is the data input line.

 UCB0SOMI – Slave out, master in
o Master mode: UCB0SOMI is the data input line.
o Slave mode: UCB0SOMI is the data output line.

 UCB0CLK – USCI SPI clock
o Master mode: UCB0CLK is an output.
o Slave mode: UCB0CLK is an input.

 UCB0STE – Slave transmit enable.
o Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin

mode.
The USCI is reset by the UCSWRST bit. When set, the UCSWRST bit resets the UCB0RXIE,
UCB0TXIE, UCB0RXIFG, UC0E, and UCFE bits and selects the UCB0TXIFG flag. Clearing UCSWRST
releases the USCI for operation. The USCI module in SPI mode supports 7- and 8-bit character
lengths selected by the UC7BIT bit. In 7-bit data mode, UCB0RXBUF is LSB justified and the MSB
is always reset. The UCMSB bit controls the direction of the transfer and selects LSB or MSB
first.

USCI Master: The USCI initiates data transfer when data is moved to the transmit data buffer
UCB0TXBUF. The UCB0TXBUF data is moved to the TX shift register when the TX shift register is
empty, initiating data transfer on UCB0SIMO starting with either the most-significant or least-
significant bit depending on the UCMSB setting. Data on UCB0SOMI is shifted into the receive
shift register on the opposite clock edge. When the character is received, the receive data is
moved from the RX shift register to the receive data buffer UCB0RXBUF and the receive
interrupt flag, UCB0RXIFG, is set, indicating the RX/TX operation is complete. A set transmit
interrupt flag, UCB0TXIFG, indicates that data has moved from UCB0TXBUF to the TX shift
register and UCB0TXBUF is ready for new data. It does not indicate RX/TX completion. To
receive data into the USCI in master mode, data must be written to UCB0TXBUF because
receive and transmit operations operate concurrently.

USCI Slave: UCB0CLK is used as the input for the SPI clock and must be supplied by the external
master. The data-transfer rate is determined by this clock and not by the internal bit clock
generator. Data is written to UCB0TXBUF and moved to the TX shift register before the start of
UCB0CLK is transmitted on UCB0SOMI. Data on UCB0SIMO is shifted into the receive shift
register on the opposite edge of UCB0CLK and moved to UCB0RXBUF when the set number of
bits are received. When data is moved from the RX shift register to UCB0RXBUF, the UCB0RXIFG
interrupt flag is set, indicating that data has been received. The overrun error bit, UCOE, is set
when the previously received data is not read from UCB0RXBUF before new data is moved to
UCB0RXBUF.

CPE 325: Lab#10 Tutorial © A. Milenković 4

UCB0CLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided
by the USCI bit clock generator on the UCB0CLK pin. The clock used to generate the bit clock is
selected with the UCSSELx bits. When UCMST = 0, the USCI clock is provided on the UCB0CLK
pin by the master, the bit clock generator is not used, and the UCSSELx bits are don’t care. The
SPI receiver and transmitter operate in parallel and use the same clock source for data transfer.
The 16-bit value of UCBRx in the bit rate control registers UCB0xBR1 and UCB0xBR0 is the
division factor of the USCI clock source, BRCLK. The maximum bit clock that can be generated in
master mode is BRCLK. Modulation is not used in SPI mode.

The USCI has one interrupt vector for transmission and one interrupt vector for reception. The
UCB0TXIFG interrupt flag is set by the transmitter to indicate that UCB0TXBUF is ready to
accept another character. An interrupt request is generated if UCB0TXIE and GIE are also set.
UCB0TXIFG is automatically reset if a character is written to UCB0TXBUF. UCB0TXIFG is set after
a PUC or when UCSWRST = 1. UCB0TXIE is reset after a PUC or when UCSWRST = 1. The
UCB0RXIFG interrupt flag is set each time a character is received and loaded into UCB0RXBUF.
An interrupt request is generated if UCB0RXIE and GIE are also set. UCB0RXIFG and UCB0RXIE
are reset by a system reset PUC signal or when UCSWRST = 1. UCB0RXIFG is automatically reset
when UCB0RXBUF is read.

1.1.2 USI Operation – SPI Mode (MSP430F2013)

The USI module provides the basic functionality to support synchronous serial communication.
In its simplest form, it is an 8- or 16-bit shift register that can be used to output data streams, or
when combined with minimal software, can implement serial communication (see Figure 1). In
addition, the USI includes built-in hardware functionality to ease the implementation of SPI
communication. The USI module also includes interrupts to further reduce the necessary
software overhead for serial communication and to maintain the ultra-low-power capabilities
of the MSP430.

CPE 325: Lab#10 Tutorial © A. Milenković 5

Figure 1. USI Module Block Diagram (SPI mode):

The USI module is a shift register and bit counter that includes logic to support SPI
communication. The USI shift register (USISR) is directly accessible by software and contains the
data to be transmitted or the data that has been received. The bit counter counts the number
of sampled bits and sets the USI interrupt flag USIIFG when the USICNTx value becomes zero,
either by decrementing or by directly writing zero to the USICNTx bits. Writing USICNTx with a
value > 0 automatically clears USIIFG when USIIFGCC = 0, otherwise USIIFG is not affected. The
USICNTx bits stop decrementing when they become 0. They will not underflow to 0FFh. Both
the counter and the shift register are driven by the same shift clock. On a rising shift clock edge,
USICNTx decrements and USISR samples the next bit input. The latch connected to the shift
register’s output delays the change of the output to the falling edge of shift clock. It can be
made transparent by setting the USIGE bit. This setting will immediately output the MSB or LSB
of USISR to the SDO pin, depending on the USILSB bit.

While the USI software reset bit, USISWRST, is set, the flags USIIFG, USISTTIFG, USISTP, and
USIAL will be held in their reset state. USISR and USICNTx are not clocked and their contents are
not affected. To activate USI port functionality the corresponding USIPEx bits in the USI control
register must be set. This will select the USI function for the pin and maintains the PxIN and
PxIFG functions for the pin as well. With this feature, the port input levels can be read via the

CPE 325: Lab#10 Tutorial © A. Milenković 6

PxIN register by software and the incoming data stream can generate port interrupts on data
transitions. This is useful, for example, to generate a port interrupt on a START edge.

The clock source can be selected from the internal clocks ACLK or SMCLK, from an external
clock SCLK, as well as from the capture/compare outputs of Timer_A. In addition, it is possible
to clock the module by software using the USISWCLK bit when USISSELx = 100. The USIDIVx bits
can be used to divide the selected clock by a power of 2 up to 128. The generated clock, USICLK,
is stopped when USIIFG = 1 or when the module operates in slave mode. The USICKPL bit is
used to select the polarity of USICLK. When USICKPL = 0, the inactive level of USICLK is low.
When USICKPL = 1 the inactive level of USICLK is high.

The USI module is configured in SPI mode when USII2C = 0. Control bit USICKPL selects the
inactive level of the SPI clock while USICKPH selects the clock edge on which SDO is updated
and SDI is sampled. USIPE5, USIPE6, and USIPE7 must be set to enable the SCLK, SDO, and SDI
port functions.

USI Master: The USI module is configured as SPI master by setting the master bit USIMST and
clearing the I2C bit USII2C. Since the master provides the clock to the slave(s) an appropriate
clock source needs to be selected and SCLK configured as output. When USIPE5 = 1, SCLK is
automatically configured as an output. When USIIFG = 0 and USICNTx > 0, clock generation is
enabled and the master will begin clocking in/out data using USISR. Received data must be read
from the shift register before new data is written into it for transmission. In a typical
application, the USI software will read received data from USISR, write new data to be
transmitted to USISR, and enable the module for the next transfer by writing the number of bits
to be transferred to USICNTx.

USI Slave: The USI module is configured as SPI slave by clearing the USIMST and the USII2C bits.
In this mode, when USIPE5 = 1 SCLK is automatically configured as an input and the USI receives
the clock externally from the master. If the USI is to transmit data, the shift register must be
loaded with the data before the master provides the first clock edge. The output must be
enabled by setting USIOE. When USICKPH = 1, the MSB will be visible on SDO immediately after
loading the shift register. The SDO pin can be disabled by clearing the USIOE bit. This is useful if
the slave is not addressed in an environment with multiple slaves on the bus. Once all bits are
received, the data must be read from USISR and new data loaded into USISR before the next
clock edge from the master. In a typical application, after receiving data, the USI software will
read the USISR register, write new data to USISR to be transmitted, and enable the USI module
for the next transfer by writing the number of bits to be transferred to USICNTx.

The 16-bit USISR is made up of two 8-bit registers, USISRL and USISRH. Control bit USI16B
selects the number of bits of USISR that are used for data transmit and receive. When USI16B =
0, only the lower 8 bits, USISRL, are used. To transfer < 8 bits, the data must be loaded into
USISRL such that unused bits are not shifted out. The data must be MSB- or LSB-aligned
depending on USILSB. When USI16B = 1, all 16 bits are used for data handling. When using
USISR to access both USISRL and USISRH, the data needs to be properly adjusted when < 16 bits
are used.

CPE 325: Lab#10 Tutorial © A. Milenković 7

There is one interrupt vector associated with the USI module, and one interrupt flag, USIIFG,
relevant for SPI operation. When USIIE and the GIE bit are set, the interrupt flag will generate
an interrupt request. USIIFG is set when USICNTx becomes zero, either by counting or by
directly writing 0 to the USICNTx bits. USIIFG is cleared by writing a value > 0 to the USICNTx
bits when USIIFGCC = 0, or directly by software.

The following programs in Figure 2 and Figure 3 illustrate utilization of SPI mode of
communication between the MSP430FG4618 and MSP430F2013, both of which are present on
the TI experimenter’s board. Serial communication setup using UART mode of USCI between
MSP430FG4618 and PC enables visualization and confirmation of the data transfer between the
two microcontrollers using SPI. The programs in Figure 2 and Figure 3 are to be run on
MSP430FG4618 and MSP430F2013 respectively, as per the instructions provided in the
program header. The MSP430FG4618 uses the USCI while the MSP430F2013 uses the USI.
MSP430FG4618 communicates with PC via RS232 module using USCI Serial Communication
peripheral interface. This program takes user prompts the user to input a choice to turn ON or
OFF the LED3 located on MSP430F2013. The user choice is communicated to MSP430FG4618
(master) via USCI serial interface and the corresponding action is communicated to
MSP430F2013 (slave) via SPI. Based on the user choice, MSP430F2013 will turn ON or OFF the
LED3. Open the MobaXTerm/putty application on your workstation with the settings as
mentioned in the demo programs below. After creating a project for each program in Code
Composer Studio, download and run the program in Figure 2 by connecting the FET debugger
to JTAG1 on the board. Stop debugging this project. Disconnect the FET debugger from JTAG1
and connect it to JTAG2 on the board. Make sure the device selected is the MSP430F2013. Now
download and run the program in Figure 3. The MSP430FG4618 sends a message to the
MobaXTerm/putty and awaits response from the user through keyboard to turn on or off the
LED3. LED3 is connected to pin 0 of port 1 (P1.0) on MSP430F2013. The user input is then sent
from the MSP430FG4618 to the MSP430F2013 via SPI. LED 3 will be turned on or off
accordingly and the current state of LED is detected by the MSP430FG4618 and sent to
MobaXTerm/putty via UART.

CPE 325: Lab Tutorial #10 © A. Milenković 8

/*-- 1
 * File: Lab10_D1.c (CPE 325 Lab10 Demo code) 2
 * Function: SPI Interface (MPS430Fg4618) 3
 * Description: Using the MSP-EXP430FG4618 Development Tool establish a data 4
 * exchange between the MSP430FG4618 and MSP430F2013 devices using 5
 * the SPI mode. The MSP430FG4618 uses the USCI module while the 6
 * MSP430F2013 uses the USI module. MSP430FG4618 communicates with 7
 * PC via RS232 module using USCI Serial Communication peripheral 8
 * interface. This program takes user prompts the user to input a 9
 * choice to turn ON or OFF the LED3 located on MSP430F2013. The 10
 * user choice is communicated to MSP430FG4618 (master) via USCI 11
 * serial interface and the corresponding action is communicated 12
 * to MSP430F2013(slave) via SPI. Based on the user choice, 13
 * MSP430F2013 will turn ON or OFF the LED3. This is the master code 14
 * that runs on MSP430FG4618. 15
 * Slave Master 16
 * MSP430F2013 MSP430FG4618 17
 * ----------------- ----------------- 18
 * | XIN|- /|\| XIN|- 19
 * | | | | | 32kHz xtal 20
 * | XOUT|- --|RST XOUT|- 21
 * | | | | 22
 * LED <-|P1.0 | | | 23
 * | BF /P1.4|------->|P3.0/BF | 24
 * | SDI/P1.7|<-------|P3.1/UCB0SIMO | 25
 * | SDO/P1.6|------->|P3.2/UCB0SOMI | 26
 * | SCLK/P1.5|<-------|P3.3/UCB0CLK | 27
 * 28
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 29
 * An external watch crystal between XIN & XOUT is required for ACLK 30
 * Instructions: 1. Set the following parameters in Putty/MobaXterm 31
 * Port : COM1 32
 * Baud rate : 19200 33
 * Data bits: 8 34
 * Parity: None 35
 * Stop bits: 1 36
 * Flow Control: None 37
 * 2. This lab requires to configure the USI module of MSP430F2013 38
 * as slave and MSP430FG4618 as master in SPI mode. 39
 * 3. Connect the following jumpers on header 1 (H1) on the 40
 * experimenter's board. [1-2], [3-4], [5-6], [7-8] 41
 * H1 42
 * _______ 43
 * 1|-------|2 44
 * 3|-------|4 45
 * 5|-------|6 46
 * 7|-------|8 47
 * |_______| 48
 * Jumper must be present on PWR1, PWR2 and JP2. 49
 * 50
 * 4. Download and run this code by the connecting the FET debugger 51
 * to JTAG2 on the experimenter's board. 52
 * 5. Make sure the device selected is MSP430F2013 in the General 53
 * Options of CCS. 54
 * 55

CPE 325: Lab Tutorial #10 © A. Milenković 9

 * Input: Character y or n from the user 56
 * Output: Turn on or off the LED3 and display the status on Putty/MobaXterm 57
 --/ 58
#include "msp430xG46x.h" 59
#include <stdio.h> 60
 61
#define LED_ON_STATE 0x31 // Character '1' 62
#define LED_OFF_STATE 0x30 // Character '0' 63
#define LED_NUL_STATE 0x00 // Character NULL - used for dummy write 64
operation 65
 66
#define LED_ON 0x01 67
#define LED_OFF 0x00 68
 69
unsigned char ch; // Hold char from UART RX 70
unsigned char rx_flag; // Receiver rx status flag 71
 72
char gm1[] = "Press 'y' to turn ON and 'n' to turn OFF the LED"; 73
char gm2[] = "Type in 'y' or 'n'!"; 74
 75
void SPISetup(void) 76
{ 77
 UCB0CTL0 = UCMSB + UCMST + UCSYNC; // Sync. mode, 3-pin SPI, Master mode, 8-bit 78
data 79
 UCB0CTL1 = UCSSEL_2 + UCSWRST; // SMCLK and Software reset 80
 UCB0BR0 = 0x02; // Data rate = SMCLK/2 ~= 500kHz 81
 UCB0BR1 = 0x00; 82
 P3SEL |= BIT1 + BIT2 + BIT3; // P3.1,P3.2,P3.3 option select 83
 UCB0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 84
} 85
 86
unsigned char SPIGetState(void) 87
{ 88
 while((P3IN & 0x01)); // Verifies busy flag 89
 IFG2 &= ~UCB0RXIFG; 90
 UCB0TXBUF = LED_NUL_STATE; // Dummy write to start SPI 91
 while (!(IFG2 & UCB0RXIFG)); // USCI_B0 TX buffer ready? 92
 return UCB0RXBUF; 93
} 94
 95
void SPISetState(unsigned char State) 96
{ 97
 while(P3IN & 0x01); // Verifies busy flag 98
 IFG2 &= ~UCB0RXIFG; 99
 UCB0TXBUF = State; // Write new state 100
 while (!(IFG2 & UCB0RXIFG)); // USCI_B0 TX buffer ready? 101
} 102
 103
void UART0_putchar(char c) 104
{ 105
 // Wait for previous character to transmit 106
 while (!(IFG2 & UCA0TXIFG)); 107
 UCA0TXBUF = c; 108
} 109
 110

CPE 325: Lab Tutorial #10 © A. Milenković 10

void Serial_Initialize(void) 111
{ 112
 P2SEL |= BIT4+BIT5; // Set UC0TXD and UC0RXD to transmit and 113
receive data 114
 UCA0CTL1 |= BIT0; // Software reset 115
 UCA0CTL0 = 0; // USCI_A0 control register 116
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK - 1048576 Hz 117
 UCA0BR0=54; // Baud rate - 1048576 Hz / 19200 118
 UCA0BR1=0; 119
 UCA0MCTL=0x0A; // Modulation 120
 UCA0CTL1 &= ~BIT0; // Software reset 121
 IE2 |=UCA0RXIE; // Enable USCI_A0 RX interrupt 122
} 123
 124
void main(void) 125
{ 126
 WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer 127
 Serial_Initialize(); 128
 SPISetup(); 129
 _EINT(); // Enable global interrupts 130
 131
 int z, i; 132
 for(z = 100; z > 0; z--); // Delay to allow baud rate stabilize 133
 134
 // Greeting Message 135
 for(i = 0; i < 49; i++) { 136
 ch = gm1[i]; 137
 UART0_putchar(ch); // Print the greeting message on 138
Putty/MobaXterm 139
 } 140
 141
 UART0_putchar('\n'); // Newline 142
 UART0_putchar('\r'); // Carriage return 143
 144
 while(1) { 145
 while(!(rx_flag&0x01)); // Wait until receive the character from 146
Putty/MobaXterm 147
 rx_flag = 0; // Clear rx_flag 148
 149
 switch (ch) { 150
 case 'y': 151
 SPISetState(LED_ON_STATE); 152
 for(i = 1000; i > 0;i--); // Delay 153
 UART0_putchar(SPIGetState());// Get the current state of LED and print 154
 // '1' - ON ; '0' - OFF 155
 break; 156
 case 'n': 157
 SPISetState(LED_OFF_STATE); 158
 for(i = 1000; i > 0;i--); // Delay 159
 UART0_putchar(SPIGetState());// Get the current state of LED and print 160
 // '1' - ON ; '0' - OFF 161
 break; 162
 default : 163
 for(i = 0; i < 20; i++) { 164
 ch = gm2[i]; 165

CPE 325: Lab Tutorial #10 © A. Milenković 11

 UART0_putchar(ch); // Print the greeting message on 166
Putty/MobaXterm 167
 } 168
 UART0_putchar('\n'); // Newline 169
 UART0_putchar('\r'); // Carriage return 170
 break; 171
 } 172
 } 173
} 174
 175
// Interrupt for USCI Rx 176
#pragma vector=USCIAB0RX_VECTOR 177
__interrupt void USCIB0RX_ISR (void) 178
{ 179
 ch = UCA0RXBUF; // Character received is moved to a variable 180
 rx_flag=0x01; // Signal main function receiving a char 181
} 182

Figure 2 SPI Master Program to be run on MSP430FG4618

CPE 325: Lab Tutorial #10 © A. Milenković 12

/*-- 1
 * File: Lab10_D2.c (CPE 325 Lab10 Demo code) 2
 * Function: SPI Interface (MPS430F2013) 3
 * Description: Using the MSP-EXP430FG4618 Development Tool establish a data 4
 * exchange between the MSP430FG4618 and MSP430F2013 devices using 5
 * the SPI mode. The MSP430FG4618 uses the USCI module while the 6
 * MSP430F2013 uses the USI module. MSP430FG4618 communicates with 7
 * PC via RS232 module using USCI Serial Communication peripheral 8
 * interface. This program takes user prompts the user to input a 9
 * choice to turn ON or OFF the LED3 located on MSP430F2013. The 10
 * user choice is communicated to MSP430FG4618 (master) via USCI 11
 * serial interface and the corresponding action is communicated 12
 * to MSP430F2013(slave) via SPI. Based on the user choice, 13
 * MSP430F2013 will turn ON or OFF the LED3. This is the salve code 14
 * that runs on MSP430F2013. 15
 * Slave Master 16
 * MSP430F2013 MSP430FG4618 17
 * ----------------- ----------------- 18
 * | XIN|- /|\| XIN|- 19
 * | | | | | 32kHz xtal 20
 * | XOUT|- --|RST XOUT|- 21
 * | | | | 22
 * LED <-|P1.0 | | | 23
 * | BF /P1.4|------->|P3.0/BF | 24
 * | SDI/P1.7|<-------|P3.1/UCB0SIMO | 25
 * | SDO/P1.6|------->|P3.2/UCB0SOMI | 26
 * | SCLK/P1.5|<-------|P3.3/UCB0CLK | 27
 * 28
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = ~1MHz 29
 * An external watch crystal between XIN & XOUT is required for ACLK 30
 * Instructions: 1. Set the following parameters in Putty/MobaXterm 31
 * Port : COM1 32
 * Baud rate : 19200 33
 * Data bits: 8 34
 * Parity: None 35
 * Stop bits: 1 36
 * Flow Control: None 37
 * 2. This lab requires to configure the USI module of MSP430F2013 38
 * as slave and MSP430FG4618 as master in SPI mode. 39
 * 3. Connect the following jumpers on header 1 (H1) on the 40
 * experimenter's board. [1-2], [3-4], [5-6], [7-8] 41
 * H1 42
 * _______ 43
 * 1|-------|2 44
 * 3|-------|4 45
 * 5|-------|6 46
 * 7|-------|8 47
 * |_______| 48
 * Jumper must be present on PWR1, PWR2 and JP2. 49
 * 50
 * 4. Download and run this code by the connecting the FET debugger 51
 * to JTAG2 on the experimenter's board. 52
 * 5. Make sure the device selected is MSP430F2013 in the General 53
 * Options of CCS. 54
 * 55

CPE 325: Lab Tutorial #10 © A. Milenković 13

 * Input: Character 1 or 0 or NULL from the master 56
 * Output: Turn on or off the LED3 and send the status of LED3 to master 57
 --/ 58
#include "msp430x20x3.h" 59
 60
#define LED_ON_STATE 0x31 // Character '1' 61
#define LED_OFF_STATE 0x30 // Character '0' 62
#define LED_NUL_STATE 0x00 // Character NULL - used for dummy write 63
operation 64
 65
#define LED_ON 0x01 66
#define LED_OFF 0x00 67
 68
#define SET_BUSY_FLAG() P1OUT |= 0x10; 69
#define RESET_BUSY_FLAG() P1OUT &= ~0x10; 70
 71
#define SET_LED() P1OUT |= 0x01; 72
#define RESET_LED() P1OUT &= ~0x01; 73
 74
unsigned char LEDState ; 75
unsigned char NextState; 76
 77
void SPISetup(void) 78
{ 79
 USICTL0 |= USISWRST; // Set UCSWRST -- needed for re-configuration 80
process 81
 USICTL0 |= USIPE5 + USIPE6 + USIPE7 + USIOE; // SCLK-SDO-SDI port enable,MSB 82
first 83
 USICTL1 = USIIE; // USI Counter Interrupt enable 84
 USICTL0 &= ~USISWRST; // **Initialize USCI state machine** 85
} 86
 87
void InitComm(void) 88
{ 89
 USICNT = 8; // Load bit counter, clears IFG 90
 USISRL = LEDState; // Set LED state 91
 RESET_BUSY_FLAG(); // Reset busy flag 92
} 93
 94
void LEdInit(unsigned char state) 95
{ 96
 if (state == LED_OFF_STATE) { 97
 RESET_LED(); 98
 LEDState = LED_OFF_STATE; 99
 } 100
 else { 101
 SET_LED(); 102
 LEDState = LED_ON_STATE; 103
 } 104
 P1DIR |= 0x11; // P1.0,4 output 105
} 106
 107
void SystemInit() 108
{ 109
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 110

CPE 325: Lab Tutorial #10 © A. Milenković 14

 BCSCTL1 = CALBC1_1MHZ; // Set DCO 111
 DCOCTL = CALDCO_1MHZ; 112
} 113
 114
void main(void) 115
{ 116
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 117
 LEdInit(LED_OFF_STATE); // LED state initialization 118
 SPISetup(); // USI module in SPI mode initialization 119
 InitComm(); // Communication initialization 120
 121
 while(1) 122
 { 123
 _BIS_SR(LPM0_bits + GIE // Enter LPM0 with interrupt 124
 125
 switch (NextState) { 126
 case 0x00: // Dummy operation; no change in the state 127
 break; 128
 default : 129
 LEDState = NextState; // New state 130
 break; 131
 } 132
 // Change the status of LED depending on the command 133
 if (LEDState == LED_OFF_STATE){ 134
 RESET_LED(); 135
 } 136
 else { 137
 SET_LED(); 138
 } 139
 USISRL = LEDState; // Prepares reply to master with new state 140
 RESET_BUSY_FLAG(); // Clears busy flag - ready for new communication 141
 } 142
} 143
 144
#pragma vector=USI_VECTOR 145
__interrupt void USI_ISR(void) 146
{ 147
 SET_BUSY_FLAG(); // Set busy flag - slave is ready with a new 148
communication 149
 NextState = USISRL; // Read new command 150
 USICNT = 8; // Load bit counter for next TX 151
 _BIC_SR_IRQ(LPM0_bits); // Exit from LPM0 on RETI 152
} 153

Figure 3 SPI Slave Program to be run on MSP430F2013

2 Bluetooth Communication

2.1 What is Bluetooth?

Bluetooth is a global wireless communication standard that connects devices together over a
certain distance. For example, Bluetooth is used to connect a headset and phone, a speaker and

CPE 325: Lab Tutorial #10 © A. Milenković 15

a PC, a smartwatch and a smartphone. It is built into billions of products on the market today
and is widely used to connect the Internet of Things (IoT).

A Bluetooth device uses radio waves instead of wires or cables to connect to a phone or
computer. A Bluetooth product, like a headset or watch, contains a tiny computer chip with a
Bluetooth radio and software that makes it easy to connect. When two Bluetooth devices want
to talk to each other, they need to pair. Communication between Bluetooth devices happens
over short-range, ad hoc networks known as piconets. A piconet is a network of devices
connected using Bluetooth technology. The network ranges from two to eight connected
devices. When a network is established, one device takes the role of the master while all the
other devices act as slaves. Piconets are established dynamically and automatically as Bluetooth
devices enter and leave radio proximity. If you want a more technical explanation, you can read
the core specification or visit the Wikipedia page for a deeper technical dive
(https://en.wikipedia.org/wiki/Bluetooth).

2.2 Bluetooth Module

In this lab we will use Bluetooth Mate Silver modems. More information about this board can
be found at the following web site: https://www.sparkfun.com/products/12576. These
modems work as a serial RX/TX pipe. For all practical applications they act as a wireless
replacement for serial cables. Any serial stream from 2400 to 115,200 bps can be passed
seamlessly from your computer to your target. However, default is 115,200 bps.

Each of these modems has a Bluetooth transceiver on it, meaning they are capable of both
sending and receiving data. They are perfect for directly replacing a wired asynchronous serial
interface. Free of wires, your devices can be up to 100 meters away from each other. The
device you will be using support Bluetooth up to 10 meters in distance. These modules are
sophisticated pieces of hardware, hiding from you details of Bluetooth protocol stack that is
quite complex.
Figure 4 below shows a Bluetooth mate board with a block diagram including main components
such as the antenna, the Bluetooth module, the voltage regulator, the status and connect LEDs,
and the interface header.

https://en.wikipedia.org/wiki/Bluetooth
https://www.sparkfun.com/products/12576

CPE 325: Lab Tutorial #10 © A. Milenković 16

Figure 4 Bluetooth Mate Silver Board

The Bluetooth board breaks out six pins (see the table below). Four pins are devoted to the
serial interface, and the other two are for power. Two of these six pins are not critical for
simple serial communication, RTS-O and CTS-I, and they will be left unconnected.

Pin
Label

Pin
Function

Input,
Output,
Power?

Description

RTS-O
Request to

send
Output

RTS is used for hardware flow control in some serial interfaces.
This output is not critical for simple serial communication.

RX-I
Serial

receive
Input

This pin receives serial data from another device. It should be
connected to the TX of the other device.

TX-O
Serial

transmit
Output

This pin sends serial data to another device. It should be
connected to the RX of the other device.

VCC
Voltage
supply

Power In
This voltage supply signal is routed through a 3.3V regulator, then
routed to the Bluetooth module. It should range from 3.3V to 6V.

CTS-I
Clear to

send
Input

CTS is another serial flow control signal. Like RTS, it's not required
for most, simple serial interfaces.

GND Ground Power In
The 0V reference voltage, common to any other device connected

to the Bluetooth modem.

To connect the Bluetooth module to the Experimenter Board, you will do the following:
Step 1. Connect the TX pin from the board’s serial communication interface (Header4 Pin5)
used in your program to the RX-I pin of the Bluetooth module;

Step 2. Connect the RX pin from the board’s serial communication interface (Header4 Pin6) to
the TX-O pin of the Bluetooth module;

CPE 325: Lab Tutorial #10 © A. Milenković 17

Step 3. Connect the ground pin from the Experimenter board to the ground pin, GND, of the
Bluetooth module; and connect the power supply pin from the board to the VCC pin of the
Bluetooth module.

Once the Experimenter board is powered-up, the Bluetooth module should be powered up too.
The next step is to connect the Bluetooth module with a Bluetooth dongle on your workstation.

2.3 Pairing Up with Bluetooth Dongle on Workstation

The Bluetooth dongle should be plugged into your workstation. Go to the “Control Panel” and
navigate to the “Devices and Printers” window. In the top-left section of that window, there
should be an “Add a device button”. Click on Add a device. You should see the following screen
(Figure 5).

Figure 5 Adding Bluetooth Device on Windows

When the “Add a device” window opens your computer’s Bluetooth module, it should
automatically search for any in-range Bluetooth devices. Those it finds should show up in the
window (give the window a few seconds to search). Click on your device. In my case, it is RNBT-
E2E5. You can confirm the name of your device by comparing the name that appears on your
screen with the last four characters from the MAC-ID of your Bluetooth Module. In my case, the
MAC ID is 00066679E252.

CPE 325: Lab Tutorial #10 © A. Milenković 18

Double click on the device and on the next window (Figure 6), enter 1234 as the PIN code. This
is the default PIN value for every RNBT device.

Figure 6 Pairing Code Prompt in Windows

Windows will take a few moments to install drivers for your device. Once it is done, it will pop
up a notification to let you know that your device is ready to use (e.g. Figure 7)

CPE 325: Lab Tutorial #10 © A. Milenković 19

Figure 7. Bluetooth Device Ready to Use

You will need to open up the Putty/MobaXterm or any serial application with the specified
baud rate given in the program and the COM port. When Windows installed drivers for your
new Bluetooth device, it created a new COM port for it. Right click on your Bluetooth device
and click on properties as shown in Figure 8.

CPE 325: Lab Tutorial #10 © A. Milenković 20

Figure 8. Finding the Bluetooth Device in Windows Devices and Printers-I

On the next window that pops-up, select the Hardware tab. In this window, you can see the
COM port number assigned to your device next to Standard Serial over Bluetooth Link.

CPE 325: Lab Tutorial #10 © A. Milenković 21

Figure 9. Finding the Bluetooth Device in Devices and Printers-II

To open up a connection between the Bluetooth devices, open up Putty/MobaXterm to that
COM port. When the terminal opens up, your Bluetooth modem’s green connect LED should
light up. Connection is successful.

2.4 Demo Programs

The demo programs below (Figure 10, Figure 11 and Figure 12) illustrate serial communication
of a time-stamped greeting message ‘Hello World!’ to the PC in UART mode using three
different programming techniques: (a) using software polling, (b) using Interrupt Service
Routine (ISR), (c) using DMA transfers. The system setup consists of one TI Experimenter’s
Board, a Bluetooth module and a Bluetooth dongle on the PC side.

CPE 325: Lab Tutorial #10 © A. Milenković 22

/*-- 1
 * File: Lab10_D3.c (CPE 325 Lab10 Demo code) 2
 * Function: Timed Hello World message in Putty/MobaXterm by using software 3
 * polling (MPS430FG4618) 4
 * Description: This C program maintains real-time clock and sends "Hello World" 5
 * message along with the time in second to the workstation through 6
 * UART. Watchdog is configured for 1s in interval mode. The 7
 * processor continuously polls to check whether the WDTIFG is set 8
 * or not. When the flag is set it increments the time and prepares 9
 * the new message to transmit. The format of the message displayed 10
 * in Putty/MobaXterm is "sssss s:Hello World!". 11
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 12
 * An external watch crystal between XIN & XOUT is required for ACLK 13
 * Instructions:Set the following parameters in serial application 14
 * Port : COM1 15
 * Baud rate : 115200 16
 * Data bits: 8 17
 * Parity: None 18
 * Stop bits: 1 19
 * Flow Control: None 20
 * 21
 * MSP430xG461x 22
 * ------------------- 23
 * /|\| XIN|- 24
 * | | | 32kHz 25
 * --|RST XOUT|- 26
 * | | 27
 * | P2.4/UCA0TXD|------------> "ssss s:Hello World" 28
 * | | 115200 - 8N1 29
 * | P2.5/UCA0RXD|<------------ 30
 * | | 31
 * Input: None 32
 * Output: Displays "ssss s:Hello World" in Putty/MobaXterm 33
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 34
 --/ 35
#include <msp430xG46x.h> 36
#include <stdio.h> 37
 38
char helloMsg[] = "Hello World!\r\n"; 39
char timeMsg[25]; // String for time message 40
unsigned int sec = 0; // Variable for measuring time 41
 42
void main(void) 43
{ 44
 int i; 45
 WDTCTL = WDT_ADLY_1000; // WDT 1000ms, ACLK, interval timer 46
 UCA0CTL1 |= UCSWRST; // Software reset 47
 P2SEL |= BIT4; // Set UCA0TXD 48
 UCA0CTL1 |= UCSSEL_2; // Use SMCLK 49
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 50
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 51
 UCA0MCTL = 0x02; // Modulation (UCBRS0=0x01)(UCOS16=0) 52
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 53
 54
 for (;;) { 55

CPE 325: Lab Tutorial #10 © A. Milenković 23

 while (!(IFG1 & WDTIFG)); // Wait for 1 second from WDT 56
 sec++; // Increment time 57
 // prepare time message to send 58
 sprintf(timeMsg, "%6d s: %s", sec, helloMsg); 59
 for (i = 0; i < 25; i++) { // Send time message 60
 while (!(IFG2 & UCA0TXIFG));// Check if TX buffer is empty 61
 UCA0TXBUF = timeMsg[i]; // Put character into tx buffer 62
 } 63
 IFG1 &= ~WDTIFG; // Clear watchdog interrupt flag 64
 } 65
} 66

Figure 10. Timestamped Hello World Using Software Polling

/*-- 1
 * File: Lab10_D4.c (CPE 325 Lab10 Demo code) 2
 * Function: Timed Hello World message in Putty/MobaXterm by using interrupts 3
 * (MPS430FG4618) 4
 * Description: This C program maintains real-time clock and sends "Hello World" 5
 * message along with the time in second to the workstation through 6
 * UART. It uses interrupt from USCIAB0TX to transmitting characters. 7
 * Watchdog in interval mode triggers the transmission every 1s. 8
 * The format of the message displayed in Putty/MobaXterm is 9
 * "sssss s:Hello World!". 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 11
 * An external watch crystal between XIN & XOUT is required for ACLK 12
 * Instructions:Set the following parameters in Putty/MobaXterm 13
 * Port : COM1 14
 * Baud rate : 115200 15
 * Data bits: 8 16
 * Parity: None 17
 * Stop bits: 1 18
 * Flow Control: None 19
 * 20
 * MSP430xG461x 21
 * ------------------- 22
 * /|\| XIN|- 23
 * | | | 32kHz 24
 * --|RST XOUT|- 25
 * | | 26
 * | P2.4/UCA0TXD|------------> "ssss s:Hello World" 27
 * | | 115200 - 8N1 28
 * | P2.5/UCA0RXD|<------------ 29
 * | | 30
 * Input: None 31
 * Output: Displays "ssss s:Hello World" in Putty/MobaXterm 32
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 33
 * Priyanka Madhushri 34
 --/ 35
#include <msp430xG46x.h> 36
#include <stdio.h> 37
 38
char helloMsg[] = "Hello World!\n\r"; 39
char timeMsg[25]; // String for time message 40
unsigned int sec = 0; // variable for measuring time 41
int i = 0; // Character counter 42

CPE 325: Lab Tutorial #10 © A. Milenković 24

 43
void main(void) { 44
 WDTCTL = WDT_ADLY_1000; // WDT 1000ms, ACLK, interval timer 45
 IE1 |= WDTIE; // Enable WDT interrupt 46
 UCA0CTL1 |= UCSWRST; // Software reset 47
 P2SEL |= BIT4; // Set UCA0TXD 48
 UCA0CTL1 |= UCSSEL_2; // Use SMCLK 49
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 50
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 51
 UCA0MCTL = 0x02; // Modulation (UCBRS0=0x01)(UCOS16=0) 52
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 53
 54
 for (;;) { 55
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, enable interrupts 56
 sec++; // Increment time 57
 sprintf(timeMsg, "%6d s: %s", sec, helloMsg); // Prepare time message 58
 i = 0; // Character counter 59
 IE2 |= UCA0TXIE; // Enable transmit interrupts 60
 } 61
} 62
 63
#pragma vector = WDT_VECTOR 64
__interrupt void WDT_ISR(void) { 65
 __bic_SR_register_on_exit(CPUOFF);// Exit LPM mode 66
} 67
 68
#pragma vector = USCIAB0TX_VECTOR // Transmit ISR 69
__interrupt void TX_ISR(void) { 70
 UCA0TXBUF = timeMsg[i++]; // Send the next character 71
 if (i == 25) IE2 &= ~UCA0TXIE; // If all characters are sent disable interrupts 72

} 73

Figure 11. Timestamped Hello World Using USCI ISR

CPE 325: Lab Tutorial #10 © A. Milenković 25

/*-- 1
 * File: Lab10_D5.c (CPE 325 Lab10 Demo code) 2
 * Function: Timed Hello World message in Putty/MobaXterm by using DMA 3
 * (MPS430FG4618) 4
 * Description: This C program maintains real-time clock and sends "Hello World" 5
 * message along with the time in second to the workstation through 6
 * UART. DMA0 is used to transfer a string as a block to UCA0TXBUF. 7
 * DMAREQ will trigger the DMA0. Watchdog in interval mode triggers 8
 * block transfer every 1s. The format of the message displayed 9
 * in Putty/MobaXterm is "sssss s:Hello World!". 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 11
 * An external watch crystal between XIN & XOUT is required for ACLK 12
 * Instructions:Set the following parameters in Putty/MobaXterm 13
 * Port : COM1 14
 * Baud rate : 115200 15
 * Data bits: 8 16
 * Parity: None 17
 * Stop bits: 1 18
 * Flow Control: None 19
 * 20
 * MSP430xG461x 21
 * ------------------- 22
 * /|\| XIN|- 23
 * | | | 32kHz 24
 * --|RST XOUT|- 25
 * | | 26
 * | P2.4/UCA0TXD|------------> "ssss s:Hello World" 27
 * | | 115200 - 8N1 28
 * | P2.5/UCA0RXD|<------------ 29
 * | | 30
 * Input: None 31
 * Output: Displays "ssss s:Hello World" in Putty/MobaXterm 32
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 33
 --/ 34
#include <msp430xG46x.h> 35
#include <stdio.h> 36
 37
char helloMsg[] = "Hello World!\n\r"; 38
char timeMsg[25]; // String for time message 39
unsigned int sec = 0; // Variable for measuring time 40
 41
void main(void) { 42
 WDTCTL = WDT_ADLY_1000; // WDT 1000ms, ACLK, interval timer 43
 IE1 |= WDTIE; // Enable WDT interrupt 44
 P2SEL |= BIT4; // P2.4 USCI_A0 TXD 45
 UCA0CTL1 |= UCSSEL_2; // SMCLK 46
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 47
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 48
 UCA0MCTL = 0x02; // Modulation (UCBRS0=0x01)(UCOS16=0) 49
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 50
 51
 DMACTL0 = DMA0TSEL_4; // DMAREQ, software trigger, TX is ready 52
 DMA0SA = (int)timeMsg; // Source block address 53
 DMA0DA = (int)&UCA0TXBUF; // Destination single address 54
 DMA0SZ = 25; // Length of the String 55

CPE 325: Lab Tutorial #10 © A. Milenković 26

 DMA0CTL = DMASRCINCR_3 + DMASBDB + DMALEVEL; // Increment src address 56
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 57
} 58
 59
#pragma vector = WDT_VECTOR // Trigger DMA block transfer 60
__interrupt void WDT_ISR(void) { 61
 sec++; 62
 sprintf(timeMsg, "%6d s: %s", sec, helloMsg); 63
 DMA0CTL |= DMAEN; // Enable DMA transfer 64
} 65

Figure 12. Timestamped Hello World Using DMA Transfers

3 References

In order to understand more about UART communication and the USCI peripheral device,
please access the following references:

 Davies’ MSP430 Microcontroller Basics, pages 497 – 520 and pages 520 – 534
(examples)

 The MSP430FG4618 User’s Guide, Chapter 20, pages 587 – 610 (USCI in SPI mode)

 The MSP430F2013 User’s Guide, Chapter 14, pages 405 – 420 (USI in SPI mode)

