

CPE 325: Lab#11 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #11 Tutorial

Analog-to-Digital Converter and Digital-to-Analog Converter

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective
This tutorial will introduce the configuration and operation of the MSP430 12-bit analog-to-digital
converter (ADC12) and digital-to-analog converter (DAC12). Programs will demonstrate the use
of ADC12 to interface an on-board temperature sensor as well as external analog inputs. In
addition, a program will demonstrate how to generate an analog periodic signal of desired
waveform. Specifically, you will learn how to:

Configure the ADC12 and DAC12 peripherals
Choose reference voltages to maximize signal resolution
Create waveform lookup table in MATLAB
Interface of an on-board temperature sensor
Interface external analog signal inputs

Notes
All previous tutorials are required for successful completion of this lab, especially the tutorials
introducing the TI Experimenter’s board, UART communication, and Timer_A.

Contents
1 Analog-to-Digital Converters ... 2

1.1 ADC Resolution, Reference Voltages, and Signal Resolution ... 2

1.2 On-Chip Temperature Sensor .. 2

1.3 Example: Analog Thumbstick Configuration .. 6

3 Digital-to-Analog Converters ... 12

3.1 Sinusoidal Wave Generator ... 13

4 References ... 15

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka

CPE 325: Lab#11 Tutorial © A. Milenković 2

1 Analog-to-Digital Converters

The world around us is analog. Sensors or transducers convert physical quantities such as,
temperature, force, light, sound, and others, into electrical signals, typically voltage signals that
we can measure. Analog-to-digital converters allow us to interface these analog signals and
convert them into digital values that can further be stored, analyzed, or communicated.

The MSP430 family of microcontrollers has a variety of analog-to-digital converters with varying
features and conversion methods. In this laboratory we focus on the ADC12 converter used in
the MSP430FG4618. The ADC12 converter has 16 configurable input channels; 8 input channels
are routed to corresponding analog input pins; remaining input channels are routed to internal
voltages an on-chip temperature sensor.

1.1 ADC Resolution, Reference Voltages, and Signal Resolution

There are several key factors that should be regarded when configuring your ADC12 to most
effectively read the analog signal. The first parameter you should understand is the device’s
voltage resolution, i.e., the smallest change of an input analog signal that causes a change in the
digital output. We will be using the ADC12 peripheral that has a vertical resolution of 12 bits.
That means that it can distinguish between 212 (0 to 4095) input voltage levels. An A/D converter
described as “n-bit” can distinguish between 0 and 2n-1 voltage steps.

After acknowledging your ADC vertical resolution, the reference voltages need to be set. Setting
the reference voltages dials in the minimum and maximum values read by the ADC. For instance,
you could set your V- to -5V and your V+ to 10 V. With that setup on the ADC12, the numerical
sampled value 0 would correspond to a signal input of -5 V, and a sampled value of 4095 would
correspond to a 10 V input.

It is very important to characterize the input signal you are expecting before you set up your ADC.
If you expect a signal input between 0 V and 3 V, you should set your reference voltages to 0 V
and 3 V. If you set them to -5V and +5V, you would be wasting a large amount of your sample
“bit depth,” and your overall sample resolution would suffer because your sample input values
would stay between 2048 and 3275. There would only be (3275–2048=1227) steps of resolution
for your input signal rather than 4095 if you choose 0 V and 3 V as your reference voltages.

An ADC typically relies on a timer to periodically generate a trigger to start sampling of the
incoming signals. You should choose a timer period that triggers sampling frequently enough to
recreate the original input signals (the minimum sampling frequency should be at least two times
the frequency of the signal’s largest harmonic).

1.2 On-Chip Temperature Sensor

The MSP430’s ADC12 has an internal temperature sensor that creates an analog voltage
proportional to its temperature. A transfer characteristic of the temperature sensor is shown in
Figure 1. The output of the temperature sensor is connected to the input multiplexor channel 10
(INCHx=1010). When using the temperature sensor, the sample time (the time ADC12 is looking

at the analog signal) must be greater than 30 s. From the transfer characteristic, we get that the

CPE 325: Lab#11 Tutorial © A. Milenković 3

temperature in degrees Celsius can be expressed as 𝑑𝑒𝑔𝐶 =
𝑉𝑠𝑒𝑛𝑠𝑜𝑟−986 𝑚𝑉

3.55 𝑚𝑉
, where Vsensor is the

voltage from the temperature sensor. The ADC12 transfer characteristic gives the following

equation: 𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑡 = 4095 ∙
𝑉𝑠𝑒𝑛𝑠𝑜𝑟

𝑉𝑅𝐸𝐹
, or 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑉𝑅𝐸𝐹 ∙

𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑡

4095
. By using the internal

voltage generator VREF=1,500 mV (1.5 V), we can derive temperature as follows:

𝑑𝑒𝑔𝐶 =
(𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑡−2692)∙423

4095
. Make sure your calculations match the equation given. How would

equation change if instead of using VREF=1.5 V we use VREF=2.5 V?

Figure 1. Internal Temperature Sensor Transfer Characteristic: V=f(T)

Let us consider a C application shown in Figure 2 that samples the on-chip temperature sensor,
converts the sampled voltage from the sensor to temperature in degrees Celsius and Fahrenheit,
and sends the temperature information through a RS232 link to the Putty or MobaXterm
application. Analyze the program and test it on the TI Experimenter’s Board. Answer the following
questions.

What does the program do?
What are configuration parameters of ADC12 (input channel, clock, reference voltage,
sampling time, ...)?
What are configuration parameters of the USART0 module?
How does the temperature sensor work?

CPE 325: Lab#11 Tutorial © A. Milenković 4

/*--
 * File: Lab11_D1.c (CPE 325 Lab11 Demo code)
 * Function: Measuring the temperature (MPS430FG4618)
 * Description: This C program samples the on-chip temperature sensor and
 * converts the sampled voltage from the sensor to temperature in
 * degrees Celsius and Fahrenheit. The converted temperature is
 * sent to HyperTerminal over the UART by using RS-232 cable.
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz)
 * An external watch crystal between XIN & XOUT is required for ACLK
 * Instructions:Set the following parameters in HyperTerminal
 * Port : COM1
 * Baud rate : 38400
 * Data bits: 8
 * Parity: None
 * Stop bits: 1
 * Flow Control: None
 *
 * MSP430xG461x
 * -------------------
 * /|\| XIN|-
 * | | | 32kHz
 * --|RST XOUT|-
 * | |
 * | P2.4/UCA0TXD|------------>
 * | | 38400 - 8N1
 * | P2.5/UCA0RXD|<------------
 * | |
 * Input: Character Y or y or N or n
 * Output: Displays Temperature in Celsius and Fahrenheit in HyperTerminal
 * Author: Aleksandar Milenkovic, milenkovic@computer.org
 --/

#include <msp430xG46x.h>
#include <stdio.h>

char ch; // Holds the received char from UART
unsigned char rx_flag; // Status flag to indicate new char is received

char gm1[] = "Hello! I am an MSP430. Would you like to know my temperature? (Y|N)";
char gm2[] = "Bye, bye!";
char gm3[] = "Type in Y or N!";

long int temp; // Holds the output of ADC
long int IntDegF; // Temperature in degrees Fahrenheit
long int IntDegC; // Temperature in degrees Celsius

char NewTem[25];

void UART_setup(void) {
 P2SEL |= BIT4+BIT5; // Set UC0TXD and UC0RXD a
 UCA0CTL1 |= BIT0; // software reset
 UCA0CTL0 = 0; // USCI_A0 control register
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK - 1048576 Hz
 UCA0BR0 = 27; // Baud rate - 1048576 Hz / 38400
 UCA0BR1 = 0;

CPE 325: Lab#11 Tutorial © A. Milenković 5

 UCA0MCTL = 0x94; // Modulation
 UCA0CTL1 &= ~BIT0; // Software reset
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt
}

void UART_putCharacter(char c) {
 while (!(IFG2 & UCA0TXIFG)); // Wait for TX to be ready
 UCA0TXBUF = c; // Put character into TX buffer
}

void sendMessage(char* msg, int len) {
 int i;
 for(i = 0; i < len; i++) {
 UART_putCharacter(msg[i]);
 }
 UART_putCharacter('\n'); // Newline
 UART_putCharacter('\r'); // Carriage return
}

void ADC_setup(void) {
 unsigned int i;
 ADC12CTL0 = SHT0_8 + REFON + ADC12ON; // (256*1/5MHz) > 30 us, 1.5 V
 ADC12CTL1 = SHP; // Enable sample timer
 ADC12MCTL0 = INCH_10 + SREF_1; // Channel 10, Vref+
 ADC12IE = ADC12IE + BIT0; // Enable interrupt
 for (i = 0; i < 0x3600; i++); // SW delay for reference start-up
}

void main(void) {
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
 UART_setup(); // Setup USCI_A0 module in UART mode
 ADC_setup(); // Setup ADC12

 rx_flag = 0; // RX default state "empty"
 _EINT(); // Enable global interrupts
 while(1) {
 sendMessage(gm1, sizeof(gm1));// Send a greetings message

 while(!(rx_flag&0x01)); // Wait for input
 rx_flag = 0; // Clear rx_flag
 sendMessage(&ch, 1); // Send received char

 // Character input validation
 if ((ch == 'y') || (ch == 'Y')) {
 ADC12CTL0 |= ENC + ADC12SC; // Sampling and conversion start
 _BIS_SR(CPUOFF + GIE); // LPM0 with interrupts enabled
 // oC = ((x/4095)*1500mV)-986mV)*1/3.55mV
 // IntDegC = (ADCMEM0 - 2692)* 423/4095
 IntDegC = ((temp - 2692) * 423)/4095;
 IntDegF = IntDegC*(9/5) + 32;
 // Printing the temperature on HyperTerminal/Putty
 sprintf(NewTem, "T(F)=%ld\tT(C)=%ld\n", IntDegF, IntDegC);
 sendMessage(NewTem, sizeof(NewTem));
 }
 else if ((ch == 'n') || (ch == 'N')) {

CPE 325: Lab#11 Tutorial © A. Milenković 6

 sendMessage(gm2, sizeof(gm2));
 break; // Get out
 }
 else {
 sendMessage(gm3, sizeof(gm3));
 }
 } // End of while
 while(1); // Stay here forever
}

#pragma vector = USCIAB0RX_VECTOR
__interrupt void USCIA0RX_ISR (void) {
 ch = UCA0RXBUF; // Copy the received char
 rx_flag = 0x01; // Signal to main
 LPM0_EXIT;
}

#pragma vector = ADC12_VECTOR
__interrupt void ADC12ISR (void) {
 temp = ADC12MEM0; // Move results, IFG is cleared
 _BIC_SR_IRQ(CPUOFF); // Clear CPUOFF bit from 0(SR)
}

Figure 2. C Program that Samples On-Chip Temperature Sensor

1.3 Example: Analog Thumbstick Configuration

The above program details configuration and use of the ADC12 for single channel use. However,
many analog devices or systems would require multiple channel configurations. As an example,
let us imagine an analog joystick as is used by controllers for most modern gaming consoles. So-
called thumbsticks have X and Y axis voltage outputs depending on the vector of the push it
receives as input. For this example, we will use a thumbstick that has 0 to 3V output in the X and
Y axes. No push on either axis results in a 1.5V output for both axes. In Figure 3 below, note how
a push at about 120° with around 80% power results in around 2.75V output for the Y axis and
0.8V output for the X axis.

CPE 325: Lab#11 Tutorial © A. Milenković 7

Figure 3. Performance data for hypothetical thumbstick

We want to test the thumbstick output using the UAH Serial App. To do this, we will first hook
the thumbstick outputs to our device. Let’s say we will use analog input A3 for the X axis and
A7 for the Y axis.

Figure 4. Pinouts and Header Connections for Analog Inputs

Note that the analog input A3 (port P6.3) corresponds to the pin 4 of the H8 header, and analog
input A7 (port P6.7) corresponds to the pin 8 of the H8 header. That is where we will connect
horizontal HORZ and vertical VERT wires of the thumbstick. Because the outputs are from 0 to
3V, we need to set our reference voltages accordingly. We can use the board’s ground and 3V
supply as references.

We will want to have our output as the float datatypes. The output for each axis should be a
percentage. In Figure 3, for example, the converted Y axis output would be 91.67% and the X
axis output would be 26.67%. Here is the formula you would use to convert the values
(remember, the microcontroller is going to be receiving values from 0 to 4095 based on voltage
values from 0V to 3V that we set as our references):

CPE 325: Lab#11 Tutorial © A. Milenković 8

𝐼𝑛𝑝𝑢𝑡 𝐴𝐷𝐶 𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑠𝑡𝑒𝑝𝑠 ×
3𝑉

4095
 ×

100%

3𝑉
= %𝑃𝑜𝑤𝑒𝑟

We could send our information in a variety of ways including a vector format, signed percentage,
or even just ADC “steps.” If we are using the percentage calculated as shown above, our packet
to send to the UAH serial app would look like the one below (1 header byte, 2 single precision
floating-point numbers). Figure 5 shows how to configure UAH Serial App to accept two channels
including single-precision floating-point numbers. Figure 6 shows signals representing the
percentage of HORZ and VERT direction of the thumbstick (read line, CH0, represents HORZ and
blue line, CH1, represents VERT) when it is moved along HORZ and VERT axes. The value 100
(100%) of the red line indicates that thumbstick is moved fully in the horizontal direction.

Figure 5. UAH Serial App Settings

CPE 325: Lab#11 Tutorial © A. Milenković 9

Figure 6. UAH Serial App Showing Percentage Signals from Thumbstick
(CH0 – HORZ, CH1 – VERT)

/*--
 * File: Lab11_D2.c (CPE 325 Lab11 Demo code)
 * Function: Interfacing thumbstick (MPS430FG4618)
 * Description: This C program interfaces with a thumbstick sensor that has
 * x (HORZ) and y (VERT) axis and outputs from 0 to 3V.
 * The value of x and y axis
 * is sent as the percentage of power to the UAH Serial App.
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz)
 * An external watch crystal between XIN & XOUT is required for ACLK
 *
 * MSP430xG461x
 * -------------------
 * /|\| XIN|-
 * | | | 32kHz
 * --|RST XOUT|-
 * | |
 * | P2.4/UCA0TXD|------------>
 * | | 38400 - 8N1
 * | P2.5/UCA0RXD|<------------
 * | |
 * Input: Connect thumbstick to the board
 * Output: Displays % of power in UAH serial app
 * Author: Micah Harvey
 --/

CPE 325: Lab#11 Tutorial © A. Milenković 10

#include <msp430xG46x.h>

volatile long int ADCXval, ADCYval;
volatile float Xper, Yper;

void TimerA_setup(void) {
 TACCR0 = 3277; // 3277 / 32768 Hz = 0.1s
 TACTL = TASSEL_1 + MC_1; // ACLK, up mode
 TACCTL0 = CCIE; // Enabled interrupt
}

void ADC_setup(void) {
 int i =0;

 P6DIR &= ~BIT3 + ~BIT7; // Configure P6.3 and P6.7 as input pins
 P6SEL |= BIT3 + BIT7; // Configure P6.3 and P6.7 as analog pins
 ADC12CTL0 = ADC12ON + SHT0_6 + MSC; // configure ADC converter
 ADC12CTL1 = SHP + CONSEQ_1; // Use sample timer, single sequence
 ADC12MCTL0 = INCH_3; // ADC A3 pin - Stick X-axis
 ADC12MCTL1 = INCH_7 + EOS; // ADC A7 pin - Stick Y-axis
 // EOS - End of Sequence for Conversions
 ADC12IE |= 0x02; // Enable ADC12IFG.1
 for (i = 0; i < 0x3600; i++); // Delay for reference start-up
 ADC12CTL0 |= ENC; // Enable conversions
}

void UART_putCharacter(char c) {
 while(!(IFG2 & UCA0TXIFG)); // Wait for previous character to be sent
 UCA0TXBUF = c; // Send byte to the buffer for transmitting
}

void UART_setup(void) {
 P2SEL |= BIT4 + BIT5; // Set up Rx and Tx bits
 UCA0CTL0 = 0; // Set up default RS-232 protocol
 UCA0CTL1 |= BIT0 + UCSSEL_2; // Disable device, set clock
 UCA0BR0 = 27; // 1048576 Hz / 38400
 UCA0BR1 = 0;
 UCA0MCTL = 0x94;
 UCA0CTL1 &= ~BIT0; // Start UART device
}

void sendData(void) {
 int i;
 Xper = (ADCXval*3.0/4095*100/3); // Calculate percentage outputs
 Yper = (ADCYval*3.0/4095*100/3);
 // Use character pointers to send one byte at a time
 char *xpointer=(char *)&Xper;
 char *ypointer=(char *)&Yper;

 UART_putCharacter(0x55); // Send header
 for(i = 0; i < 4; i++) { // Send x percentage - one byte at a time
 UART_putCharacter(xpointer[i]);
 }
 for(i = 0; i < 4; i++) { // Send y percentage - one byte at a time
 UART_putCharacter(ypointer[i]);

CPE 325: Lab#11 Tutorial © A. Milenković 11

 }
}

void main(void) {
 WDTCTL = WDTPW +WDTHOLD; // Stop WDT
 TimerA_setup(); // Setup timer to send ADC data
 ADC_setup(); // Setup ADC
 UART_setup(); // Setup UART for RS-232
 _EINT();

 while (1){
 ADC12CTL0 |= ADC12SC; // Start conversions
 __bis_SR_register(LPM0_bits + GIE); // Enter LPM0
 }
}

#pragma vector = ADC12_VECTOR
__interrupt void ADC12ISR(void) {
 ADCXval = ADC12MEM0; // Move results, IFG is cleared
 ADCYval = ADC12MEM1;
 __bic_SR_register_on_exit(LPM0_bits); // Exit LPM0
}

#pragma vector = TIMERA0_VECTOR
__interrupt void timerA_isr() {
 sendData(); // Send data to serial app
 __bic_SR_register_on_exit(LPM0_bits); // Exit LPM0
}

Figure 7 shows demo code that could be used to set up the ADC12 and UART and send the
thumbstick information to the UAH Serial App. Analyze the code and answer the following
questions.

What does the program do?
What are configuration parameters of ADC12 (input channel, clock, reference voltage,
sampling time, ...)?
How many samples per second is taken from ADC12?
How many samples per second per axis is sent to UAH Serial App?

/*-- 1
 * File: Lab11_D2.c (CPE 325 Lab11 Demo code) 2
 * Function: Interfacing thumbstick (MPS430FG4618) 3
 * Description: This C program interfaces with a thumbstick sensor that has 4
 * x (HORZ) and y (VERT) axis and outputs from 0 to 3V. 5
 * The value of x and y axis 6
 * is sent as the percentage of power to the UAH Serial App. 7
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 8
 * An external watch crystal between XIN & XOUT is required for ACLK 9
 * 10
 * MSP430xG461x 11
 * ------------------- 12
 * /|\| XIN|- 13

CPE 325: Lab#11 Tutorial © A. Milenković 12

 * | | | 32kHz 14
 * --|RST XOUT|- 15
 * | | 16
 * | P2.4/UCA0TXD|------------> 17
 * | | 38400 - 8N1 18
 * | P2.5/UCA0RXD|<------------ 19
 * | | 20
 * Input: Connect thumbstick to the board 21
 * Output: Displays % of power in UAH serial app 22
 * Author: Micah Harvey 23
 --/ 24
 25
#include <msp430xG46x.h> 26
 27
volatile long int ADCXval, ADCYval; 28
volatile float Xper, Yper; 29
 30
void TimerA_setup(void) { 31
 TACCR0 = 3277; // 3277 / 32768 Hz = 0.1s 32
 TACTL = TASSEL_1 + MC_1; // ACLK, up mode 33
 TACCTL0 = CCIE; // Enabled interrupt 34
} 35
 36
void ADC_setup(void) { 37
 int i =0; 38
 39
 P6DIR &= ~BIT3 + ~BIT7; // Configure P6.3 and P6.7 as input pins 40
 P6SEL |= BIT3 + BIT7; // Configure P6.3 and P6.7 as analog pins 41
 ADC12CTL0 = ADC12ON + SHT0_6 + MSC; // configure ADC converter 42
 ADC12CTL1 = SHP + CONSEQ_1; // Use sample timer, single sequence 43
 ADC12MCTL0 = INCH_3; // ADC A3 pin - Stick X-axis 44
 ADC12MCTL1 = INCH_7 + EOS; // ADC A7 pin - Stick Y-axis 45
 // EOS - End of Sequence for Conversions 46
 ADC12IE |= 0x02; // Enable ADC12IFG.1 47
 for (i = 0; i < 0x3600; i++); // Delay for reference start-up 48
 ADC12CTL0 |= ENC; // Enable conversions 49
} 50
 51
void UART_putCharacter(char c) { 52
 while(!(IFG2 & UCA0TXIFG)); // Wait for previous character to be sent 53
 UCA0TXBUF = c; // Send byte to the buffer for transmitting 54
} 55
 56
void UART_setup(void) { 57
 P2SEL |= BIT4 + BIT5; // Set up Rx and Tx bits 58
 UCA0CTL0 = 0; // Set up default RS-232 protocol 59
 UCA0CTL1 |= BIT0 + UCSSEL_2; // Disable device, set clock 60
 UCA0BR0 = 27; // 1048576 Hz / 38400 61
 UCA0BR1 = 0; 62
 UCA0MCTL = 0x94; 63
 UCA0CTL1 &= ~BIT0; // Start UART device 64
} 65
 66
void sendData(void) { 67
 int i; 68

CPE 325: Lab#11 Tutorial © A. Milenković 13

 Xper = (ADCXval*3.0/4095*100/3); // Calculate percentage outputs 69
 Yper = (ADCYval*3.0/4095*100/3); 70
 // Use character pointers to send one byte at a time 71
 char *xpointer=(char *)&Xper; 72
 char *ypointer=(char *)&Yper; 73
 74
 UART_putCharacter(0x55); // Send header 75
 for(i = 0; i < 4; i++) { // Send x percentage - one byte at a time 76
 UART_putCharacter(xpointer[i]); 77
 } 78
 for(i = 0; i < 4; i++) { // Send y percentage - one byte at a time 79
 UART_putCharacter(ypointer[i]); 80
 } 81
} 82
 83
void main(void) { 84
 WDTCTL = WDTPW +WDTHOLD; // Stop WDT 85
 TimerA_setup(); // Setup timer to send ADC data 86
 ADC_setup(); // Setup ADC 87
 UART_setup(); // Setup UART for RS-232 88
 _EINT(); 89
 90
 while (1){ 91
 ADC12CTL0 |= ADC12SC; // Start conversions 92
 __bis_SR_register(LPM0_bits + GIE); // Enter LPM0 93
 } 94
} 95
 96
#pragma vector = ADC12_VECTOR 97
__interrupt void ADC12ISR(void) { 98
 ADCXval = ADC12MEM0; // Move results, IFG is cleared 99
 ADCYval = ADC12MEM1; 100
 __bic_SR_register_on_exit(LPM0_bits); // Exit LPM0 101
} 102
 103
#pragma vector = TIMERA0_VECTOR 104
__interrupt void timerA_isr() { 105
 sendData(); // Send data to serial app 106
 __bic_SR_register_on_exit(LPM0_bits); // Exit LPM0 107
} 108

Figure 7. C Program that takes the x- and y- axis Samples from a Thumbstick

CPE 325: Lab#11 Tutorial © A. Milenković 14

3 Digital-to-Analog Converters

So far we have explored analog-to-digital converters that convert an analog input to an integer
value that can be stored and processed by the microcontroller. Conversely, digital-to-analog
converters take a numerical value that provided by the user and output its corresponding analog
voltage. The concepts of resolution and reference voltages are seen here again and should be
understood to make the best use of the digital to analog converter.

The MSP430FG4618 has a digital-to-analog peripheral (DAC12) with two channels. Each channel
has one control register and one data register. The control register determines the output pin,
output level, reference voltage, 8- or 12-bit resolution, when the output latch triggers, the
amplifier settings, and the interrupt settings. The data register holds the value to be converted
to an analog voltage output.

The DAC12 operation is much simpler than the ADC12. There is no timer associated with the
device, so one of the MSP’s timers such as the Timer_A must be used. Likewise, there is no
internal voltage reference, so it is easiest to configure the ADC12 voltage reference to be used.
Once the DAC12 is configured and enabled, a timer interrupt can periodically call an ISR that
writes a new value to the DAC12 data register. By default, when the data register is written, a
new output voltage is generated.

As discussed in the previous section, it is important to optimize your signal’s vertical (time) and
horizontal (voltage) resolution for your requirements. Figure 8 below is an example of a D/A
converter output waveform.

Notice how the output looks very blocky. With better resolution, the “blockiness” of the signal
is minimized. The resolution is a function of how often the signal data is updated, the resolution
of the converter, and the output waveform algorithm.

In this project, we will create a lookup table using MATLAB. The lookup table is a large array
stored in memory that holds individual values that will be passed to the DAC12 in sequence to
output a signal. While creating our waveform lookup table, it is important to keep in mind that
we can increase our output resolution by increasing the number of samples used per period of
our waveform. That also requires us to use a faster timer to refresh our DAC12 module to
maintain the correct frequency.

MATLAB works by manipulating matrices. Below you will see an example of how to create and
save a lookup table consisting of 256 values for a sine wave.

CPE 325: Lab#11 Tutorial © A. Milenković 15

Figure 8. D/A Converter Output Waveform

3.1 Sinusoidal Wave Generator

Let us consider the following application. Your task is to develop a sinusoidal wave generator
using the TI Experimenter’s Board. The function you should implement is described as follows: y
= 1.25*(1+sin(x)). The maximum voltage is consequently 2.5 V and the minimum voltage is 0 V.
The frequency of the sine wave should be 10 Hz, that this one period should take 10 ms.

The signal is generated using the MSP430’s DAC12 digital-to-analog converter. Periodically we
will be sending a new digital value to the DAC12. These values are prepared in advance in a
constant table. Let us first discuss how to create this lookup table. Our first step is to determine
the number of samples we want to have and the number of bits to represent them. More
samples, means a better quality of the generated sine wave. Let us assume that we want to have
256 samples of the function y in a lookup table, each sample with a value in the range of [0 ...
4095]. The sample with value 0 corresponds to 0 V, and samples with the value 0xFFF (4095)
corresponds to 2.5 V. We can use MATLAB to generate the lookup table for x=0, x, 2x,..2*pi,
where x=2*pi/256. Figure 9 shows the MATLAB program. We generate 256 samples (actually
257) in the range x=[0...2*pi] and calculate the integer values that correspond to each sample x,
using the original function y=1.25*(1+sin(x)). The values are rounded to nearest integers and the
samples are written back to a file. Note: the actual number of samples is 257, so we should
remove the last one (the same as the first). We should also ensure that no samples are larger
than 4095 (the largest number that can be represented by 12-bits). These constants will be used
to initialize the lookup table visible to your program (here we create a header file named
sine_lut_256.h).

CPE 325: Lab#11 Tutorial © A. Milenković 16

x=(0:2*pi/256:2*pi);

y=1.25*(1+sin(x));

dac12=y*4095/2.5;

dac12r = round(dac12);

dlmwrite('sine_lut_256.h',dac12r, ',');

Figure 9 Matlab program to generate a 256-entry lookup table

The next step is to determine the trigger period. We want 256 samples to spread over 2*pi range
of x. The required period of the sine wave is 10 Hz (0.1sec). That means that the trigger period
is 0.1/256 sec. We will use a TimerA device to generate triggers. Assuming that the default clock
frequency on SMCLK is used as the timer clock (1048576 Hz), we can determine the value that
needs to be written to the TimerA counter (0.1/256)*FSMCLK = 410.

Figure 10 shows the complete program. We stop the watchdog time, initialize the ADC12 to give
a reference voltage of 2.5 V, and initialize the timer to raise an interrupt every 0.1/256 sec. The
TimerA ISR wakes the processor, we read the next sample from the table, and output it to the
DAC12.

/*-- 1
 * File: Lab11_D3.c (CPE 325 Lab11 Demo code) 2
 * Function: Sinusoidal wave with DAC (MPS430FG4618) 3
 * Description: This C program reconstructs the sinusoidal wave (y=1.25(1+sin(x))) 4
 * from the samples using DAC and outputs at P6.6. WDT is used to 5
 * give an interrupt for every ~0.064ms to wake up the CPU and 6
 * feed the DAC with new value. Connect the oscilloscope to P6.6 7
 * to observe the signal. The interval used to read the samples 8
 * controls the frequency of output signal. 9
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 10
 * An external watch crystal between XIN & XOUT is required for ACLK 11
 * 12
 * MSP430xG461x 13
 * ------------------- 14
 * /|\| XIN|- 15
 * | | | 32kHz 16
 * --|RST XOUT|- 17
 * | | 18
 * | DAC0/P6.6|--> sine (10Hz) 19
 * | | 20
 * Input: None 21
 * Output: Sinusoidal wave with 10Hz frequency at P6.6 22
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 23
 --/ 24
#include <msp430fg4618.h> 25
#include "sine_lut_256.h" /*256 samples are stored in this table */ 26
 27
void TimerA_setup(void) { 28
 TACTL = TASSEL_2 + MC_1; // SMCLK, up mode 29
 TACCR0 = 410; // Sets Timer Freq (1048576*0.1sec/256) 30
 TACCTL0 = CCIE; // CCR0 interrupt enabled 31
} 32
 33

CPE 325: Lab#11 Tutorial © A. Milenković 17

void DAC_setup(void) { 34
 ADC12CTL0 = REF2_5V + REFON; // Turn on 2.5V internal ref volage 35
 unsigned int i = 0; 36
 for (i = 50000; i > 0; i--); // Delay to allow Ref to settle 37
 DAC12_0CTL = DAC12IR + DAC12AMP_5 + DAC12ENC; //Sets DAC12 38
} 39
 40
void main(void) { 41
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT 42
 TimerA_setup(); // Set timer to uniformly distribute the samples 43
 DAC_setup(); // Setup DAC 44
 unsigned int i = 0; 45
 while (1) { 46
 __bis_SR_register(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 47
 DAC12_0DAT = LUT256[i]; 48
 i=(i+1)%256; 49
 } 50
} 51
 52
#pragma vector = TIMERA0_VECTOR 53
__interrupt void TA0_ISR(void) { 54
 __bic_SR_register_on_exit(LPM0_bits); // Exit LPMx, interrupts enabled 55
} 56

Figure 10. C Program to Generate Sine Wave Output Using DAC12

4 References

To understand more about the ADC12 peripheral and its configuration, please refer the following
materials:

● Davies Text, pages 407-438 and pages 485-492

● MSP430FG4618 User’s Guide, Chapter 28, pages 787-814 (ADC12)

● MSP430FG4618 User’s Guide, page 802 (Internal temperature sensor)

● MSP430FG4618 User’s Guide, Chapter 31, pages 869-886 (DAC12)

