

CPE 325: Lab#1 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #1 Tutorial

Introduction to TI Code Composer Studio (IDE)

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:

This tutorial will help you get started with the TI’s Code Composer Studio for MSP430. It
includes the following topics:
 Creating an application project
 Debugging

Notes:

The latest version of Code Composer Studio can be downloaded for free from the TI’s web site:
http://www.ti.com/tool/ccstudio.

Contents:

1 Creating a Project .. 2

1.1 Creating a New Workspace and a Project .. 2

1.2 Compiling and Linking the Application ... 5

2 Debugging .. 10

2.1 Starting the Debugger .. 10

2.2 Inspecting Source Statements .. 11

2.3 Inspecting Variables ... 12

2.3.1 Setting a Watchpoint .. 12

2.3.2 Setting and Monitoring Breakpoints ... 14

2.3.3 Executing up to a Breakpoint .. 14

2.4 Debugging in Disassembly Mode ... 14

2.5 Monitoring Registers .. 15

2.6 Monitoring Memory ... 16

2.7 Viewing Terminal I/O.. 18

3 Software Documentation .. 18

3.1 Code Formatting and Organization .. 18

3.2 Code Headers and Comments .. 19

3.3 Software Flowcharts... 19

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka
http://www.ti.com/tool/ccstudio

CPE 325: Lab#1 Tutorial © A. Milenković 2

1 Creating a Project

This section introduces you to TI’s Code Composer Studio (CCStudio) Integrated Development
Environment (IDE) that will be used for software development in the Embedded Systems
Laboratory. In the form of a step-by-step tutorial, it demonstrates a typical development cycle
and shows you how to use the CCStudio compiler and the CCStudio linker to create a small
application for the MSP430 microcontroller. It includes topics such as creating a workspace,
setting up a project with C source files, compiling and linking your application, and debugging.

1.1 Creating a New Workspace and a Project

Using the Code Composer Studio IDE, you can design advanced projects. For more information,
read the Code Composer Studio wiki at http://processors.wiki.ti.com/index.php/Category:CCS.
Here, we will create a relatively simple project with several source files.

Step 1. Open Code Composer Studio (CCS).

Step 2. In the Eclipse Launcher select a directory to be used as the workspace (see Figure 1.)
and press <Launch>. A Getting Started window will appear (Figure 2). This page provides links to
example projects as well as documentation related to Code Composer and TI Microcontrollers.

Figure 1. Eclipse Launcher

Step 3. Create a new project from the Getting Started menu. Click the <New Project> button. A
New CCS Project window appears as shown in Figure 3.

http://processors.wiki.ti.com/index.php/Category:CCS

CPE 325: Lab#1 Tutorial © A. Milenković 3

Figure 2. CCS Getting Started Page

Step 4. Name the project “Lab1_D1” and select “Empty Project” (see Figure 3.). For the target,
select one of the following options depending on the target board: (a) MSP430FG4618 for the
TI MSP430FG4618/2013 Experimenter’s board; or (b) MSP430G2553 for the MSP430
Launchpad.

Step 5. Click <Finish>. The Project Explorer will show where all the project files are. Note that
there are no source code files because we created an Empty Project (Figure 4).

CPE 325: Lab#1 Tutorial © A. Milenković 4

Figure 3. New CCS Project Setup

Figure 4 Project Explorer

CPE 325: Lab#1 Tutorial © A. Milenković 5

Step 6. Copy the “Lab1_D1.c” and “twofact.c” from Windows Explorer to Lab_D1 in the project
explorer. Right click on Lab1_D1 and select Add Files option. When prompted select “Copy
Files” and click <OK>.

Figure 5. File Operation Dialog

Step 7. Double-click one of the files to see the source code (see Figure 6).

Figure 6. Code Composer Studio

1.2 Compiling and Linking the Application

You can now compile and link the application. You should also create a compiler list file and a
linker map file and view both.

CPE 325: Lab#1 Tutorial © A. Milenković 6

Step 1. Right-Click “Lab_D1” in the project explorer and select “Properties”. A new window will
pop up as shown in Figure 7.

Figure 7. Project Properties

Step 2. From this menu, you can setup various project settings such as compiler optimizations,
lst file generation, heap size, stack size, and the level of printf/scanf support. Below are several
useful options.

 Select the “Build->MSP430 Compiler->Optimization.” This option allows you to set
optimization settings. Change the “Optimization level” to off.

 Select the “Build->MSP430 Compiler->Advanced Options->Assembler Options” to setup
the listing file options. Select the checkbox “Generate listing file (--asm_listing, -al)”
(Figure 8).

 Select the “Build->MSP430 Compiler->Processor Options.” This allows you to set the
code and memory model. Set the “Silicon version” to msp and the “code memory
model” and “data memory model” to small. This will limit the instruction set to non-
extended instructions.

CPE 325: Lab#1 Tutorial © A. Milenković 7

Figure 8 Project Assembler Options

 Select the “Build->MSP430 Compiler->Advanced Options->Language Options”. Change
“Level of printf/scanf support requires (--printf_support) to full.

Figure 9. Compiler Language Options

 Select the “Build->MSP430 Linker->Basic Options” to set the heap size. Change “Heap
size for C/C++ dynamic memory allocation (--heap_size, -heap) from 80 to 300. This
change is necessary to get the printf debugging to work later in the lab. Click <Apply and
Close> to close the properties windows.

Figure 10 Project Linker Options

CPE 325: Lab#1 Tutorial © A. Milenković 8

Step 3. To build a single file right-click the file in the Project Explorer and select “Build Selected
File(s)” as shown in Figure 11. The Console window will show you if there are any build errors
(Figure 12).

Figure 11. File Options Menu

Figure 12. CDT Build Console

CPE 325: Lab#1 Tutorial © A. Milenković 9

Step 4. Repeat the steps to build the “twofact.c” file. Click the icon to build and link the
project.

Step 5. Open the Debug folder in the Project Explorer to see the generated list files. The list files
have the extension .lst. For example, twofact.lst is generated containing a C source code with
the corresponding assembly language code for twofact.c source file. The files with extension
.obj will be used as inputs to the linker. The debug executable has the extension .out and will be
used as an input to the Debugger.

Step 6. Open the map file from the debug folder and examine the different sections and the
space they will use in memory. The formatting can take some getting used to but there are
several tools available for graphical analysis, including one inside of CCS. From the menu bar
select “Memory Allocation” (Figure 13). Examine the Memory Allocation table to see which
sections are placed into which type of memory (Figure 14).

Figure 13. View Menu

CPE 325: Lab#1 Tutorial © A. Milenković 10

Figure 14. Memory Allocation Table

Step 7. You can also examine the estimated stack usage by selecting the “Stack Usage” option
from the View menu. Change the optimization settings and example how the Memory
Allocation and Stack Usage change from the various options. Reset the optimization level back
to the off setting.

2 Debugging

This section continues the development cycle started in the previous section and explores the
basic features of the Debugger.

2.1 Starting the Debugger

The correct debugger options were setup during the project creation, TI MSP430 USB1, and will
work from both the Experimenter board and the Launchpad. Make sure the correct device is
connected to your workstation.

Step 1. Click the icon from the menu bar to start debugging.

Step 2. In the UPL Adviser Dialog (Figure 15) click the <Proceed> button.

CPE 325: Lab#1 Tutorial © A. Milenković 11

Figure 15. ULP Advisor

Step 3. After downloading the code, the application will be halted at the start of main as shown
in Figure 16.

Figure 16. Debugger Entry Location

2.2 Inspecting Source Statements

The following debugging options are available for inspecting the code while it runs on the target
hardware.

 Resume (F8). Run the program.

 Terminate (CTRL + F8). Stop execution of the program.

 Suspend (Alt + F8). Pause execution of the program.

 Step Into (F5). Step into a function.

 Step Over (F6). Step over the next line.

 Step Out (F7). Step out of a function.

 Restart . Start execution of the program from the beginning.

Step 1. Use the Step Over command until you have passed the ifact function as shown in Figure
16.

CPE 325: Lab#1 Tutorial © A. Milenković 12

Figure 16. Passing the ifact function

2.3 Inspecting Variables

CCS allows you to watch variables or expressions in the source code, so that you can keep track
of their values as you execute your application. You can look at a variable in many ways. For
example, you can view a variable by pointing at it in the source window with the mouse
pointer, or by opening one of the Variables, or Watch windows.
Note: When optimization level off is used, all non-static variables will live during their entire
scope and thus, the variables are fully debuggable. When higher levels of optimizations are
used, variables might not be fully debuggable. A good rule of thumb is to increase optimization
until the program meets design constraints. For this lab turning off optimization will meet these
constraints. By default, CCStudio shows you the Variables window which gives you a list of the
current variables in the scope of the executing code (e.g., Figure 17).

Figure 17. Local Variables Window

2.3.1 Setting a Watchpoint

Next you will use the Watch window to inspect variables.

Step 1. Double click one of the variables to highlight it in the source code. Next right-click it and
select “Add Watch Expression…” (Figure 18).

CPE 325: Lab#1 Tutorial © A. Milenković 13

Figure 18. Text Options Menu

Step 2. In the Add Watch Expression Dialog box (Figure 19) click the <OK> button.

Figure 19. Add Watch Expression Dialog

The variable should now appear in the Watch Expressions Window as shown in Figure 20.

Figure 20. Watch Expressions Window

The Continuous Refresh button can also be used to update the value while the program is
running.

CPE 325: Lab#1 Tutorial © A. Milenković 14

2.3.2 Setting and Monitoring Breakpoints

Breakpoints can be added to the code by double-clicking the blue shaded area next to the line
number where you want the breakpoint to stop (e.g., Figure 21 Line 28).

Figure 21. Breakpoint in code (Line 28)

2.3.3 Executing up to a Breakpoint

Pressing the Resume button or F8 will run the program until the breakpoint is reached.

2.4 Debugging in Disassembly Mode

Debugging in the disassembly can be done by selecting “View->Disassembly” (Figure 22) from
the menu bar.

Figure 22. View Menu

In this view as shown in Figure 23, you can see how the compiler has translated your C code to
the machine language of the processor.

CPE 325: Lab#1 Tutorial © A. Milenković 15

 ‘

Figure 23. Disassembly View

2.5 Monitoring Registers

The Register window lets you monitor and modify the contents of the processor registers.
Notice registers PC (Program Counter), SP (Stack Pointer), SR (Status Register), and R4-R15
(general-purpose registers) in Figure 24.

Figure 24. Registers Window

CPE 325: Lab#1 Tutorial © A. Milenković 16

Step 1. Step Over to execute the next instructions and watch how the values change in the
Register window.

Step 2. Close the Register window. To see the cycle count, click on Run->Clock->Enable (Figure
25) from the debug perspective.

Figure 25. Run Menu

This icon () will show in either the bottom of CCS or in the status bar. More information
about the profile clock can be found at
http://processors.wiki.ti.com/index.php/Profile_clock_in_CCS

2.6 Monitoring Memory

The Memory window (Figure 26) lets you monitor selected areas of memory. You can select
RAM, flash, or SFR portion of the memory.

http://processors.wiki.ti.com/index.php/Profile_clock_in_CCS

CPE 325: Lab#1 Tutorial © A. Milenković 17

Figure 26. Memory View

Step 1. To open the Memory Browser, select “View->Memory Browser” (Figure 27) from the
menu bar.

Figure 27. View Menu

Step 2. If all of the memory units have not been initialized yet, continue to step over and you
will notice how the memory contents will be updated.

Step 3. You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired
value.

Step 4. Close the memory window.

CPE 325: Lab#1 Tutorial © A. Milenković 18

2.7 Viewing Terminal I/O

Sometimes you might need to debug instructions in your application that make use of stdin and
stdout without the possibility of having hardware support. CCS lets you simulate stdin and
stdout by using the Console (e.g., Figure 28).
Note: While the correct settings were set above for printf support in this program, some
programs may need more heap memory to correctly print to the console. More information
about printf can be found at http://processors.wiki.ti.com/index.php/Tips_for_using_printf

Figure 28. Console Output of Execution Program

Note: The contents of the window depend on how far you have executed the application.

3 Software Documentation

Maintaining good software documentation is of key importance, especially when your code
may be used by others. A special focus should be placed on your header and comments, code
formatting, and software diagrams or flowcharts.

3.1 Code Formatting and Organization

Part of good programming is ensuring that the code is neatly formatted and organized. This not
only helps others who may need to access your code, but it also helps in debugging and
maintaining your own code. Here are some general guidelines to assist in organizing your code
in the Code Composer Studio IDE:

 Ensure all your function prototypes are declared after your #include statements at the
top of the program.

 Declare all your global variables directly after your function prototypes in one area

 Consistently organize your functions. A good way to organize functions is to have your
main function, followed by the other functions in order of call, followed by your
interrupt functions. You can choose a different way, but make sure to organize the types
of functions and maintain consistency.

http://processors.wiki.ti.com/index.php/Tips_for_using_printf

CPE 325: Lab#1 Tutorial © A. Milenković 19

 Keep track of your indention. In the CCStudio IDE, a tab is four spaces. Each function,
loop, or other “nest” should be indented appropriately and consistently.

 It is especially important to keep track of where your code is located on your
workstation. CCStudio uses workspaces to help you keep track of your code. It is
recommended that you create a directory where you will keep all your projects. Create
subdirectories for each lab assignment. Your code is your creative expression and thus
take care of it. Your engineering reputation will depend on the quality of your code.

3.2 Code Headers and Comments

By now, you have become familiarized with commenting in your programs. Comments help you
and others keep up with the flow of the code, and it is important to maintain good comments.
In this Laboratory, you will be programming in C and assembly language. In assembly language,
you generally should comment every line of code to explain its purpose. The reason for this is
that the code is much less self-explanatory than common coding languages. In C, there are
generally a few guidelines to remember when commenting:

 You should always include a header at the top of your code that gives basic information
about your program (what it does and how), author, and when the code was written.

 Each variable declaration should be commented.

 Each function declaration should be properly noted.

 Any segment of code, whether it is to initialize hardware, perform a calculation, or do
another task, should have concise comments that explain it.

3.3 Software Flowcharts

A flowchart is a helpful way for you to decide on an approach to your program before you
begin. It is also an extremely effective way of concisely relaying how your code works to others.
A flowchart does not contain information about every line of code, but it is a slightly higher-
level picture that shows logically how problems are addressed. Hardware initializations and
variable declarations should be documented. Also, any logical steps, function calls, or loops
should be noted as well as their respective conditions.
A flowchart for calculating the factorial can be seen below in Figure 29. Note that it does not
include every line of code, but it does capture the main steps in the program.

CPE 325: Lab#1 Tutorial © A. Milenković 20

 Start

End

 MAXF: Maximum integer for
finding factoriels

Is i < MAXF ?

Declare loop counter i
Declare 16-bit result a
Declare 32-bit result b

i = 1

a = ifact(i)
b = lfact(i)

Y

N

Display i, a, b

i=i+1

 Start: ifact(int p)

p==0 or p==1

Declare loop counter j
Declare temporary result t=1

j=2

j<=p

t=t*j

Y

N

Y

j=j+1

return t

N

Figure 29. Flowcharts for Calculating the Factorial

