CPE 325: Embedded Systems Laboratory
Laboratory #1 Tutorial
Introduction to Tl Code Composer Studio (IDE)

Aleksandar Milenkovi¢
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:

This tutorial will help you get started with the TI's Code Composer Studio for MSP430. It
includes the following topics:

Creating an application project

Debugging

Notes:

The latest version of Code Composer Studio can be downloaded for free from the TI’s web site:
http://www.ti.com/tool/ccstudio.

Contents:

i O =) 1 = T o o] =Tt R S 2
1.1 Creating a New Workspace and @ Project.........ccueeveee it 2
1.2 Compiling and Linking the Application.........cccciiiiiiie e 5

2 Delligging..)\ Z€.. S Ao e . f e o LB fe—) 10
2.1 Starting the DEDUEEENttt e et aee e e e e e e e esaabbeaeeeeeeeesnnnsnnnees 10
2.2 INSpecting SOUICE StateMENTS. .. oo i e e e e e e e e 11
2.3 INSPECHING VAriabIEs c.ccco et e e e e e e 12

2.3.1 Setting @ WatChPOiNT ...vveeie i e e e et e e e e e e e e e aannees 12
2.3.2 Setting and Monitoring BreakpointS........ccccivveeeeeieeieiiiiireeeeee et e e e e 14
2.3.3 Executing up to @ Breakpoint......cceeeei i 14
2.4 Debugging in DisassembBly MOGEuvveeieeiiiieiiiiieieeee e e e e eeerreeeee e e e e e e anrres 14
D S Y/ o oV o] T T = 20= o 1] o T 15
B S Y/ o oV o T T =8 1Y/ =Y 0'a Lo Y U 16
D AV T\ VoY= =T s 1o ¥ | O TR 18

3 Software DOCUMENTATIONuuiei e e e et e e e et e e e s nar e e e eerreeeeanns 18
3.1 Code Formatting and Organization.........cccceceeieeciireeeeeeeeeeicerrreeeeeeeeeenrrreeeeeeeeeeeanrees 18
3.2 Code Headers and COMMENTES......cccicuiieeieiiiieeecieee et e e eetre e e e s e e e e saae e e e e snnaeeeeenneeeas 19
3.3 SOftWare FIOWCHAIES. ...t et e e e e s 19

CPE 325: Lab#1 Tutorial © A. Milenkovic 1

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka
http://www.ti.com/tool/ccstudio

1 Creating a Project

This section introduces you to TI's Code Composer Studio (CCStudio) Integrated Development
Environment (IDE) that will be used for software development in the Embedded Systems
Laboratory. In the form of a step-by-step tutorial, it demonstrates a typical development cycle
and shows you how to use the CCStudio compiler and the CCStudio linker to create a small
application for the MSP430 microcontroller. It includes topics such as creating a workspace,
setting up a project with C source files, compiling and linking your application, and debugging.

1.1 Creating a New Workspace and a Project

Using the Code Composer Studio IDE, you can design advanced projects. For more information,
read the Code Composer Studio wiki at http://processors.wiki.ti.com/index.php/Category:CCS.
Here, we will create a relatively simple project with several source files.

Step 1. Open Code Composer Studio (CCS).

Step 2. In the Eclipse Launcher select a directory to be used as the workspace (see Figure 1.)
and press <Launch>. A Getting Started window will appear (Figure 2). This page provides links to
example projects as well as documentation related to Code Composer and Tl Microcontrollers.

%+ Eclipse Launcher X

Select a directory as workspace

Code Composer Studio uses the workspace directory to store its preferences and development artifacts.

Workspace: | C:\Users\milenka\workspace_cpe325 v Browse...

D Use this as the default and do not ask again

} Recent Workspaces

Cancel

Figure 1. Eclipse Launcher

Step 3. Create a new project from the Getting Started menu. Click the <New Project> button. A
New CCS Project window appears as shown in Figure 3.

CPE 325: Lab#1 Tutorial © A. Milenkovic 2

http://processors.wiki.ti.com/index.php/Category:CCS

File Edit View Navigate

! =
A

Project Run Scripts

CRidsiA

¥¥ CPE_325 - CCS Edit - Code Composer Studio

Window Help
o = -
New ¢ Browse —) Import =2
y v
Project @ Examples (A7 Project v

TIE2E™
Community

Yes ® No

Would you like to use CCS in ‘Simple’ mode?
(Recommended for Energia and LaunchPad users)

X

(m]

)| |18

Beo = e

App
Center
(Add Features)

#;—. "Q
G)

Support
Forum

@ Videos (Training

Wiki

Figure 2. CCS Getting Started Page

Step 4. Name the project “Lab1l_D1” and select “Empty Project” (see Figure 3.). For the target,
select one of the following options depending on the target board: (a) MSP430FG4618 for the
TI MSP430FG4618/2013 Experimenter’s board; or (b) MSP430G2553 for the MSP430

Launchpad.

Step 5. Click <Finish>. The Project Explorer will show where all the project files are. Note that
there are no source code files because we created an Empty Project (Figure 4).

CPE 325: Lab#1 Tutorial

© A. Milenkovic

CCS Project

=+ New CCS Project

Create a new CCS Project.

=5 MSP430

Project name:

» Tool-chain

Target: | msp430fg4618 V| MSP430FG4618 ©

Connection: TI MSP430 USB1 [Default] v Identify...

|Lab1_D1 \

type filter text

Use default location

C\Users\milenka\workspace_cpe325\Lab1_D1 Browse...

Compiler version: Tl v18.1.1.LTS v More...

¥ Project templates and examples

Creates an empty project initialized for the
selected device.

v

| rErtyProyeTts
EEmpty Project

@

|52 Empty Project (with main.c)
[Empty Assembly-anly Project
[Empty RTSC Project

v [=| Basic Examples
[Blink The LED
E Hello World

Open Resource Explorer to browse a wide selection of example projects...

< Back Next > Cancel

Figure 3. New CCS Project Setup

v O X
. = & — o =
5 Project Explorer 7 =
v 1= Lab1_D1 [Active - Debug]
i Includes
[=-Debug
[-=-targetConfigs

| g Ink_msp430fg4618.cmd

Figure 4 Project Explorer

CPE 325: Lab#1 Tutorial

© A. Milenkovic

Step 6. Copy the “Labl_D1.c” and “twofact.c” from Windows Explorer to Lab_D1 in the project

explorer. Right click on Labl_D1 and select Add Files option. When prompted select “Copy
Files” and click <OK>.

«+ File Operation X

Select how files should be imported into the project:

® Copy files
O Link to files

Create link locations relative to: |PROJECT LOC

Configure Drag and Drop Settings...

@ | OK | Cancel

Figure 5. File Operation Dialog

Step 7. Double-click one of the files to see the source code (see Figure 6).

N researchworkspace - Lab1_D1/Lab1_D1.c - Code Composer Studio
File Edit View Mavigate Project Run Scripts Window Help

- Bit-i@-iR-R - BECErD -
[Project Explorer 53 BES ¥v= O |[gLlalble 3
~ & Lab1_D1 [Active - Debug] ettt ittt ittt
;{,b Binaries 2* Instructor: Aleksander Milenkovic
Includes 3* Program: Calculate the factorial for first 15 integers
[4% Date: Aug 16, 2817
(& Debug 5% Input: None
(= targetConfigs 6* Output: Factorials of integer numbers from 1 to MAXF
[Lab1_Dl.c 7* Description: This C code will calculate the factorial for several integers
 Ink_msp430fgd618.cmd 8 and print out the result in beth int (16-bit) and
@ twofact.c 9 long in (it) (decimal and hexadecimal).
. . e =
[#f exponential.c 11

1 nclude <msp43@.h>
12 #include <stdio.h>
13

14 #define MAXF 16

15

16 int ifact(int);

17 leng int lifact(int);

int main(void)

// Stop watchdgg timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;

int i;
int a;
long int b;
printf (" (. 1)) oo int-dec, int-hex : long. int-dec, Long int-hex;\n")s
for (i.=.1; 1 ¢ MAXF; i++) {
a = ifact(i); // €all subroutines to do the calculation

b = lifact(i);

printf (" (¥2d)! 2. %3d, ¥Bw : ¥14ld, ¥14lx:\n", i. a3, a,. b, b);:

return @;

Figure 6. Code Composer Studio

1.2 Compiling and Linking the Application

You can now compile and link the application. You should also create a compiler list file and a
linker map file and view both.

CPE 325: Lab#1 Tutorial © A. Milenkovic 5

Step 1. Right-Click “Lab_D1"” in the project explorer and select “Properties”. A new window will
pop up as shown in Figure 7.

o Properties for Lab1_D1 O X
type filter text Build =R v v
Resource
General
~ Build Configuration: Debug [Active] ~ Manage Configurations...

» MSP430 Compiler
Processor Options

Optimization o Builder ¥ validator = Steps |og Variables % Environment ¥ Link Order S Dependencies
Include Options

ULP Advisor Builder

Advice Options Use default build command

Predefined Symbols Build d: $(CCS UTILS DIR) amak - / I
uild command: ${CCS_UTILS_DIR}/bin/gmake Variables.

Advanced Options B ? = e I

MSP430 Linker

Makefile generation
MSP430 Hex Utility [Disabled)]

Generate Makefiles automatically

Debug
Build location
Build directory: | ${workspace_loc:/Lab1_D1}/Debug Workspace... e system.. Variables.
Build settings
D Stop on first build error Enable parallel build @ Use optimal jobs (8)
O Use parallel jobs: 8
O use unlimited jobs
Make build targets
Build on resource save (Auto build) all [Variables...
Build (Incremental build) all Variables...
Clean clean | 'Variables...
See 'General' for changing tool versions and device settings
® Show advanced settings Apply and Close Cancel

Figure 7. Project Properties

Step 2. From this menu, you can setup various project settings such as compiler optimizations,
Ist file generation, heap size, stack size, and the level of printf/scanf support. Below are several
useful options.

e Select the “Build->MSP430 Compiler->Optimization.” This option allows you to set
optimization settings. Change the “Optimization level” to off.

e Select the “Build->MSP430 Compiler->Advanced Options->Assembler Options” to setup
the listing file options. Select the checkbox “Generate listing file (--asm_listing, -al)”
(Figure 8).

e Select the “Build->MSP430 Compiler->Processor Options.” This allows you to set the
code and memory model. Set the “Silicon version” to msp and the “code memory
model” and “data memory model” to small. This will limit the instruction set to non-
extended instructions.

CPE 325: Lab#1 Tutorial © A. Milenkovic 6

~ Build
w MSP430 Compiler
Processor Options
Optimization
Include Options
ULP Advisor

Debug [Active]

Configuration:

sm) file (--keep_asm, -k}

Generate listing file (--asm _listing, -al}

Advice Options
Predefined Symbols
w Advanced Options

Advanced Debug Options
Language Options
Parser Preprocessing Opti
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Feedback and Analysis Of
Library Function Assumpt
Assembler Options
File Tvoe Soecifier

Source interlist

Pre-define assembly symbeol MAME (--asm_defing, -ad)

~ | | Manage Configurations...

|

Figure 8 Project Assembler Options

“Level of printf/scanf support requires (--printf_support) to full.

~ Build
w MSP430 Compiler
Processor Optiens
Optimization
Include Options
ULP Advisor
Advice Options
Predefined Symbols
v Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Feedback and Analysis O
Library Function Assumpt
Assembler Options

Configuration: | Uebug | Active |

*~| | Manage Configurations...

Select the “Build->MSP430 Compiler->Advanced Options->Language Options”. Change

C Dialect Compile program in AMSI C89 mode. (--c89) ~
C++ Dialect Compile program in C++03 mode. {--c++03) ~
Language mode Relaxed parsing (nen-strict AMSI) (--relaxed_ansi, -pr) ~
[JEnable C++ exception handling (--exceptions)

[]Support C++ run-time type information (--rtti, -rtti)

[Treat C files as C++ files (--cpp_default, -fg)

[Allow extern € functions to propagate exceptions (--extern_c_can_throw)

Floating point precision accepted by compiler (--float_operations_allowed) all ~
Specify how to treat plain chars (signed/unsigned) (--plain_char) unsigned .
limit pending template instantiations (--pending_instantiations) I ‘ ‘ I
Level of printf/scanf support required (--printf_support) Full ~

Figure 9. Compiler Language Options

Select the “Build->MSP430 Linker->Basic Options” to set the heap size. Change “Heap

size for C/C++ dynamic memory allocation (--heap_size, -heap) from 80 to 300. This
change is necessary to get the printf debugging to work later in the lab. Click <Apply and
Close> to close the properties windows.

v Build
MSP4A30 Compiler
~ MSP430 Linker
Basic Options
File Search Path
w Advanced Options
Command File Preproces:
Diagnostics
Linker Qutput
Symbol Management
Runtime Environment
Miscellaneous
MSPA3N Hex Utility [Nisabled]

Configuration: |Debug [Active]

£

Manage Cenfigurations...

Link information (map) listed into <file> (--map_file, -m) | "&{ProjMName}lmap" | @
Specify output file name (--output_file, -0} I| "&{ProjMName}out" | =
Heap size for C/C++ dynamic memoery allocation (--heap_size, -heap) | 300 |
Set C system stack size (--stack_size, -stack) | a0 |
Hold watchdog timer during cinit auto-initialization (--cinit_hold_wdt) on ~

Figure 10 Project Linker Options

CPE 325: Lab#1 Tutoria

| © A. Milenkovic

Step 3. To build a single file right-click the file in the Project Explorer and select “Build Selected
File(s)” as shown in Figure 11. The Console window will show you if there are any build errors
(Figure 12).

[7 Project Explorer 53
v L= Lab_D1 [Active - Debug]
[Includes
= Debug
(7= targetConfigs
[Labl ™=

| Ink_r
[€] twof

New >
Open
Open With >

Show in Local Terminal >
Copy Ctrl+C

Paste Ctrl+V
¥ Delete Delete

Source »
Move...

Rename... F2

Import >
Export...

g

Build Selected File(s) I
Clean Selected File(s)
Frrlude from Build

Figure 11. File Options Menu

¥ workspace_cpe3?5 - Lab1_D1/Debug/Labl_D1.map - Code Composer Studio - o x
File Edit View Navigate Project Run Scripts Window Help

o KDy~ Bids- i@~ it 3 BB
B console 8 8
CDT Build Console [Lab1_D1]

--heap_size=300 --stack_size=80 --cinit_hold_wdt=on -1"C:/ti/ccsv8/ccs_base/mspa3e/include”
-1"C:/ti/ccsvB/tools/compiler/ti-cgt-mspa30_18.1.1.LTS/1ib" -1"C:/ti/cesvB/tools/compiler/ti-cgt-mspa3@_18.1.1.LTS/include” --reread_libs
--diag_wrap=off --display_error_number --warn_sections --xml_link_info="Labl_D1_linkInfo.xml" --use_hw_mpy=16 --rom_model -o “Labl_Dl.out"
"./Labl_Dl.0bj" "./twofact.obj" "../lnk_msp436fgdsis.cnd” -llibc.a

<Linking>

(s

(ULP 1.1) Detected no uses of low power mode state changing instructions

(ULP 4.1) Detected uninitialized Port 1 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #1@372-D: (ULP 4.1) Detected uninitialized Port 2 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 3 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 4 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 5 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 6 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 7 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 8 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #1@372-D: (ULP 4.1) Detected uninitialized Port 9 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #10372-D: (ULP 4.1) Detected uninitialized Port 10 in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

remark #1@372-D: (ULP 4.1) Detected uninitialized Port A in this project. Recommend initializing all unused ports te eliminate wasted current
consumption on unused pins.

remark #1@372-D: (ULP 4.1) Detected uninitialized Port B in this project. Recommend initializing all unused ports to eliminate wasted current
consumption on unused pins.

Finished building target: "Labl_Dl.out"

*#** Build Finished ****

Figure 12. CDT Build Console

CPE 325: Lab#1 Tutorial © A. Milenkovic 8

Step 4. Repeat the steps to build the “twofact.c” file. Click the 8- icon to build and link the
project.

Step 5. Open the Debug folder in the Project Explorer to see the generated list files. The list files
have the extension .Ist. For example, twofact.Ist is generated containing a C source code with
the corresponding assembly language code for twofact.c source file. The files with extension
.0bj will be used as inputs to the linker. The debug executable has the extension .out and will be
used as an input to the Debugger.

Step 6. Open the map file from the debug folder and examine the different sections and the
space they will use in memory. The formatting can take some getting used to but there are
several tools available for graphical analysis, including one inside of CCS. From the menu bar
select “Memory Allocation” (Figure 13). Examine the Memory Allocation table to see which
sections are placed into which type of memory (Figure 14).

325 - CCS Edit - Lab_D1/Debug/Lab_D1.map - Code Compos:
t | View Mavigate Project Run Scripts Window Hi
() Resource Explorer

\/ Resource Explorer Classic

Bz Grace Snippets
B [J5 Getting Started
I % CCSApp Center

&] GUl Composer™ >

™ Project Explorer

21 Problems Alt+Shift+C, X

El Conscle Alt+5Shift+Q, C
Advice

d
%5 Debug
3 Memory Browser

Registers

& Expressions

)= Variables Alt+Shift+Q, V
== Disassembly

9z Breakpoints Alt+Shift+Q, B
Medules

1]

Terminal

Lo g L gp

Scripting Conscle

Target Configurations

Outline Alt+5hift+0Q, O
SEck Usage

Memory Allocation

z [=l

T

Optimizer Assistant

Other... Alt+5hift+ 0, O

E
S

Figure 13. View Menu

CPE 325: Lab#1 Tutorial © A. Milenkovic 9

= Memory Allocation 12 | & = | et Y= 8

H | 240
PERIPHERALS_16BIT 256
INFOB 128
INFOA 128

v RAM 1,250 (15%) 8,182

.data 404
.sysmem 300
«cio 288
.bss 178
.stack 80
v FLASH J 556 (1) 52,926
-binit
textz_ise 36
.const 398
.cinit 122
~ FLASH2 17,532 (26%) ‘ 65,536
et 17,532

Figure 14. Memory Allocation Table

Step 7. You can also examine the estimated stack usage by selecting the “Stack Usage” option
from the View menu. Change the optimization settings and example how the Memory
Allocation and Stack Usage change from the various options. Reset the optimization level back
to the off setting.

2 Debugging

This section continues the development cycle started in the previous section and explores the
basic features of the Debugger.

2.1 Starting the Debugger

The correct debugger options were setup during the project creation, TI MSP430 USB1, and will
work from both the Experimenter board and the Launchpad. Make sure the correct device is
connected to your workstation.

i
-

Step 1. Click the L icon from the menu bar to start debugging.
Step 2. In the UPL Adviser Dialog (Figure 15) click the <Proceed> button.

CPE 325: Lab#1 Tutorial © A. Milenkovic 10

o ULP Advisor x

B The Ultra-Low-Power Advisor (ULP Advisor) checks for ultra-low power best practices.

¥ You have remarks in you praject, which you could use to improve pewer consumption in your project.
Proceed with launch? Cancel to review advice in the Problems View, grouped under the Infos category.
Checking is enabled by default. Advice is grouped within the Problems view window under the Infos category.

To change default ULP Advisor settings, go to Project » Properties > Build = MS5P430 Compiler » ULP Advisor

For ULP Advisor rule details, visit http://www.ti.com/ulpadvisor.

For option details, go to Help > Help Contents > MSP430 Compiler User's Guides > MSP430 Optimizing C/C++ Compiler User's Guide

[] Do not show this message again

oo]| conce

Figure 15. ULP Advisor

Step 3. After downloading the code, the application will be halted at the start of main as shown
in Figure 16.

gint main{ void)

ok

@ // Stop watchdgg timer to prevent time out reset
1 WDTCTL = WDTPW + WDTHOLD;

2 int i;

3 int a3

4 long int b;

Figure 16. Debugger Entry Location

2.2 Inspecting Source Statements

The following debugging options are available for inspecting the code while it runs on the target
hardware.

e Resume ¥ (F8). Run the program.

e Terminate ® (CTRL + F8). Stop execution of the program.

e Suspend ““ (Alt + F8). Pause execution of the program.

LR

e StepInto (F5). Step into a function.

e StepOver = (F6).Step over the next line.

e

e Step Out™ " (F7). Step out of a function.
B
e Restart "= . Start execution of the program from the beginning.

Step 1. Use the Step Over command until you have passed the ifact function as shown in Figure
16.

CPE 325: Lab#1 Tutorial © A. Milenkovic 11

9 int main{wvoid)

h

/! Stop watchdog timer to prevent time out reset
WOTCTL = WDTPW + WDTHOLD;
int i;
int a;
long int b;
printf("(i)} LooAnt-dec, int-hex long int-dec, . leng int-hex:;in'l:
for (i =1; i < MAXF; i++) 1
'8 a = ifact(i); // Call subroutines to do the calculation
g b = lifact(i);
1 printf("(%ad)! oked, Eex o Flald, ¥14lx;\n", 1. 8, .3, b, b1;
}
return 8;

Figure 16. Passing the ifact function

2.3 Inspecting Variables

CCS allows you to watch variables or expressions in the source code, so that you can keep track
of their values as you execute your application. You can look at a variable in many ways. For
example, you can view a variable by pointing at it in the source window with the mouse
pointer, or by opening one of the Variables, or Watch windows.

Note: When optimization level off is used, all non-static variables will live during their entire
scope and thus, the variables are fully debuggable. When higher levels of optimizations are
used, variables might not be fully debuggable. A good rule of thumb is to increase optimization
until the program meets design constraints. For this lab turning off optimization will meet these
constraints. By default, CCStudio shows you the Variables window which gives you a list of the
current variables in the scope of the executing code (e.g., Figure 17).

(%)= Variables 5% & Expressions M1} Registers =
MName Type Value Location
()= a int 1 Register RS
)= b long 1 R13:16,R12:16
[E int 1 Register R10

Figure 17. Local Variables Window

2.3.1 Setting a Watchpoint

Next you will use the Watch window to inspect variables.

Step 1. Double click one of the variables to highlight it in the source code. Next right-click it and
select “Add Watch Expression...” (Figure 18).

CPE 325: Lab#1 Tutorial © A. Milenkovic 12

for(i=1; i<MAXF; i++) |
. o —r . - : Tucl
b Breakpoint (Code Composer Studia) >

Open Declaration F3

Cut Ctrl+ X
Copy Ctrl+C
Paste Ctrl+V

+ lse Spaces for Tab

Declarations >
References >

Search Text >

=+ Runto Line Ctrl+R
150l¢ g Moveto Line

Clo %Y Add Watch Expression...

;i.ﬂt—h

Preferences...

Figure 18. Text Options Menu

Step 2. In the Add Watch Expression Dialog box (Figure 19) click the <OK> button.

’:_;Y Add Watch Expression *

Expression to watch:

Figure 19. Add Watch Expression Dialog

The variable should now appear in the Watch Expressions Window as shown in Figure 20.

{x)= Variables | 65" Expressions 52 | 111} Registers % E|| op R Qﬁ'| wi 'f| & ¥ =0
Expression Type Value Address
I (=)= a int 1 Register R9 I

g2 Add NEw expression

Figure 20. Watch Expressions Window

&

The Continuous Refresh
running.

button can also be used to update the value while the program is

CPE 325: Lab#1 Tutorial © A. Milenkovic 13

2.3.2 Setting and Monitoring Breakpoints

Breakpoints can be added to the code by double-clicking the blue shaded area next to the line
number where you want the breakpoint to stop (e.g., Figure 21 Line 28).

26 printf("(i3} int-dec, int-hex : long int-dec, long int-hex;yn"i:
27 for (1 =1; i < MAXF; i++) 1

28 a = ifact(i); '/ Call subroutines to do the calculation

29 b = lifact(i);

38

Sil printf (" (%2d)! : %ed, ¥8x : ¥lald, ¥l4lx;\n", i. @, &, b, b);

32 }

33 return &;

Figure 21. Breakpoint in code (Line 28)

2.3.3 Executing up to a Breakpoint
Pressing the Resume button or F8 will run the program until the breakpoint is reached.

2.4 Debugging in Disassembly Mode

Debugging in the disassembly can be done by selecting “View->Disassembly” (Figure 22) from
the menu bar.

- LS UEDUY - LdU_U 1 LA _U 1L - LUUE CUITIPUSED LUt
View Project Tools Run Scripts Window Help
(& Resource Explorer
w

Resource Explorer Classic

i@ Getting Started
.+ % CCSApp Center

GUI Composer™ ¥

5 Project Explorer
[Zi Problems Alt+Shift+Q, X
E Console Alt+Shift+Q, C

o Advice
%5 Debug
@ Memory Browser
i Registers
&1 Expressions

(= Variables

Alt+Shift+Q, V

== Disassembly

g 9 Breakpoints
- =, Modules

Alt+Shift+Q, B |

Figure 22. View Menu

In this view as shown in Figure 23, you can see how the compiler has translated your C code to
the machine language of the processor.

CPE 325: Lab#1 Tutorial

© A. Milenkovic

14

File Edit View Project Tools Run Scripts

g - LR ol = o e BIR% @ PR A IR R N
'5' 227 Disassembly B2
,b‘ 50 if (neg) *--bufptr = "-';
886688 : 93ea TST.W R18
BOE632: 2484 JEQ (3C3L3)
g BB6634: 8318 DEC.W R8
2 BOEEB6: 4@F8 002D 0000 MOV.B #8x002d,8x0000(R3)
52 memcpy (buffer,bufptr, uval = (tempc + BUFLEN) - bufptr);
CHL3:
& BB663C : 4104 MOV . W SP,R18
im] oec6E8e: BEeA SUB. W RB,R1e
886698 : 5834 8814 ADD. W #8x0814,R18
206694 490C MOV W R9,R12
BBEE96: 4380 MOV. W R8,R13
886698 : AABE MOV . W R18,R14
BBEE9a: 1288 75D2 CALL #memcpy
53 return uval - 1; /* DON'T COUNT NULL TERMINATION */
BBEE%e: 44eC MOV. W R1le,R12
886628 : 831C DEC.W R12
BBEEa2: 5831 0014 ADD.W #0x@@14,5P
BOE6a6: 4030 7608 ER #_mspabi_func_epilog_5
20
main():
voc6Eaa: 8031 0018 SUB.W #@8x0018,5P
22 WOTCTL = WDTPW + WDTHOLD;
Pec6as: 4@B2 5ABR @120 MOV.W #8x5a80,&Watchdog Timer WDTCTL
26 printf("(i)! : int-dec, int-hex : long int-dec, leng int-hex;in");
2066b4: 4861 776E @000 MOV.W #8x776e,8x0000(SP)
@e6cba: 1280 71C4 CALL #printf
27 for (i = 1; 4 < MAXF; i++) {
Be6cbe: 4391 2014 MOV.W #1,0xB814(5P)
8B66c2: 9881 8810 eel4 CMP. W #@x0010, 0x0014(SP)
BBEECE: 342E JGE (3C3L2)
giﬂ a = ifact(i); // Call subroutines to do the calculation
$CHL1:
% @@66Ca: 411C 8814 MOV . W Bx@814(SP),R12
voB6Ce: 1260 BEBO CALL #ifact
Be66d2: 4C81 8816 MOV . W R12,@x@016(SP)
29 b = lifact(i);
BB66d6: 411C 8814 MOV . W axaa14(sP),R12
ee66da: 1262 6B42 CALL #lifact
Be66de: 4C81 8818 MOV . W R12,@x@a18(SP)
oe6c6el; 4081 eel2 MOV W R13,8x0012(5P)
3 printf("(¥2d)! : %8d, %¥8x : ¥141d, %14Lx\n", i, a, a, b, b);
PRRAER: AART T7AF APGAR MOV.W #AxT77ae . AeRAnnl SR

Nindow Help

Figure 23. Disassembly View

2.5 Monitoring Registers

The Register window lets you monitor and modify the contents of the processor registers.
Notice registers PC (Program Counter), SP (Stack Pointer), SR (Status Register), and R4-R15

(general-purpose registers) in Figure 24.

(%)= Viariables & Expressions {1} Registers 5%

MName

v &% Core Registers
1 pC

Value

x013A14
Ox0030E2
0004

0000000
0x0BBF7B
0000068
0000000
Ox0TFFEF
OxOFFFFD
0000006
0000003
0000003
0000006
0000003
0000025
0000004

Figure 24. Registers Window

Description

Core Registers
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core

CPE 325: Lab#1 Tutorial

© A. Milenkovic

15

Step 1. Step Over to execute the next instructions and watch how the values change in the

Register window.

Step 2. Close the Register window. To see the cycle count, click on Run->Clock->Enable (Figure
25) from the debug perspective.

This icon (

Run Scripts Window Help

S

R

Figure 25. Run Menu

about the profile clock can be found at
http://processors.wiki.ti.com/index.php/Profile clock in CCS

Connect Target Ctrl+Alt+C
Disconnect Target Ctrl+Alt+D
Restare Debug State Alt+E
Load >
Resume F8
Suspend Alt+F8
Terminate Ctrl+F2
Disconnect
Go Main Alt+M
Reset >
Restart
Step Into 5
Step Over F&
Assembly Step Into Ctrl+Shift+F5
Assembly Step Over Ctrl+Shift+F6
Step Return F7
Run to Line Ctrl+R
Free Run Ctrl+F8
Step Into Selection
Clock > W
Advanced >

. Debug oY
Debug History >
Debug As >
Debug Cenfigurations... "

R-iiglH

Enable
Disable
Show
Hide
Reset

Setup...

12
{E}_) will show in either the bottom of CCS or in the status bar. More information

2.6 Monitoring Memory

The Memory window (Figure 26) lets you monitor selected areas of memory. You can select
RAM, flash, or SFR portion of the memory.

CPE 325: Lab#1 Tutorial

© A. Milenkovic

16

http://processors.wiki.ti.com/index.php/Profile_clock_in_CCS

=7 Disassembly | [J Memory Browser 52 =0
Hr@-e-Bép|tg 7
0 [@
00 - 0 <Memory Rendering 15 52

{6-Bit Hex- TiStyle &~

©xBOBBEE Special Function_IEL ~
©x@e8@e2 Special Function_IFGL

BxBaBERB2 2402 BO2A BABA

©xBOBBBS Port_9 1@ PIIN, Port_9_1€_PBIN

BxBaBERE BBEA

BxBOBBBA Port_9 1@ PAOUT, Port_d_18_PBOUT

BxB@8BRBA FBFE

0x00008C Port_9_1@ PADIR, Port_d_18_PEDIR

oxBpooeC ooBR

Ox0OBERE Port_9_1@ PASEL, Port_d_18 PBSEL

OxBPOCRE 00RO DOCE GOBO GROD DBDE

0x008018 Port_3_4 P3IN

Bxpeeels CA20

BxBABA1A Port_3_4_P3DIR

gxeeeels ooee

BxBABAIC Port 3 4 PATN

9xeeeelC 1Bee

BxBABAIE Port 3 4 P4DIR

BxBRBRlE ©ooRR

BxBABA28 Port 12 P1IN

BxBeoe28 3Ee3

BxBEBA22 Port 1 2 PIDIR

ox0e0022 0000

Bx6ABA24 Port 1 2 PITES

ox0e0024 B@5A

@x608026 Port 1 2 PISEL

BxBeRE2E FFo@

©xBOBE28 Port_1_2_P2IN

BxBada2E 7320

BxBEBE2A Port_1_2_P20IR

BxBada2A BBEe

Figure 26. Memory View

Step 1. To open the Memory Browser, select “View->Memory Browser” (Figure 27) from the
menu bar.

e e g o e
View Project Tools Run Scripts Window Helg
(#) Resource Explorer

w Resource Explorer Classic

ol

Getting Started
CCS5 App Center

Bl €«

GUI Composer™ >

Project Explorer

o 5

Problems Alt+Shift+Q, X
Console Alt+Shift+Q, C
o Advice
#5_Debug

[J Memory Browser

oiol MEgISLers

Figure 27. View Menu
Step 2. If all of the memory units have not been initialized yet, continue to step over and you
will notice how the memory contents will be updated.

Step 3. You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired
value.

Step 4. Close the memory window.

CPE 325: Lab#1 Tutorial © A. Milenkovic 17

2.7 Viewing Terminal I/O

Sometimes you might need to debug instructions in your application that make use of stdin and
stdout without the possibility of having hardware support. CCS lets you simulate stdin and
stdout by using the Console (e.g., Figure 28).

Note: While the correct settings were set above for printf support in this program, some
programs may need more heap memory to correctly print to the console. More information
about printf can be found at http://processors.wiki.ti.com/index.php/Tips for using printf

& Console 53

Lab_D1:CIO

(1i)! : int-dec, int-hex : leng int-dec, leng int-hex;
(13! : 1, 1 1, 1;
{23! : 2, 2 2, 2;
(3! : G, G 1 G, G}
(4yt 24, 18 : 24, 18;
(53! 128, 78 128, 78:
(&)l 728, 2de - 728, 2de:
(7 5e48, 13b@ : 548, 13b@;
(8)! : -25216, adse : 408328, 9dg8e;
= : -3@8336, a9aa . 3n2888, 58988;
(1ey! : 24328a, sfea Jo2agea, 37sfes;

Figure 28. Console Output of Execution Program

Note: The contents of the window depend on how far you have executed the application.

3 Software Documentation

Maintaining good software documentation is of key importance, especially when your code
may be used by others. A special focus should be placed on your header and comments, code
formatting, and software diagrams or flowcharts.

3.1 Code Formatting and Organization

Part of good programming is ensuring that the code is neatly formatted and organized. This not
only helps others who may need to access your code, but it also helps in debugging and
maintaining your own code. Here are some general guidelines to assist in organizing your code
in the Code Composer Studio IDE:
e Ensure all your function prototypes are declared after your #include statements at the
top of the program.
e Declare all your global variables directly after your function prototypes in one area
e Consistently organize your functions. A good way to organize functions is to have your
main function, followed by the other functions in order of call, followed by your
interrupt functions. You can choose a different way, but make sure to organize the types
of functions and maintain consistency.

CPE 325: Lab#1 Tutorial © A. Milenkovic 18

http://processors.wiki.ti.com/index.php/Tips_for_using_printf

e Keep track of your indention. In the CCStudio IDE, a tab is four spaces. Each function,
loop, or other “nest” should be indented appropriately and consistently.

e It is especially important to keep track of where your code is located on your
workstation. CCStudio uses workspaces to help you keep track of your code. It is
recommended that you create a directory where you will keep all your projects. Create
subdirectories for each lab assignment. Your code is your creative expression and thus
take care of it. Your engineering reputation will depend on the quality of your code.

3.2 Code Headers and Comments

By now, you have become familiarized with commenting in your programs. Comments help you
and others keep up with the flow of the code, and it is important to maintain good comments.
In this Laboratory, you will be programming in C and assembly language. In assembly language,
you generally should comment every line of code to explain its purpose. The reason for this is
that the code is much less self-explanatory than common coding languages. In C, there are
generally a few guidelines to remember when commenting:
e You should always include a header at the top of your code that gives basic information
about your program (what it does and how), author, and when the code was written.
e Each variable declaration should be commented.
e Each function declaration should be properly noted.
e Any segment of code, whether it is to initialize hardware, perform a calculation, or do
another task, should have concise comments that explain it.

3.3 Software Flowcharts

A flowchart is a helpful way for you to decide on an approach to your program before you
begin. It is also an extremely effective way of concisely relaying how your code works to others.
A flowchart does not contain information about every line of code, but it is a slightly higher-
level picture that shows logically how problems are addressed. Hardware initializations and
variable declarations should be documented. Also, any logical steps, function calls, or loops
should be noted as well as their respective conditions.

A flowchart for calculating the factorial can be seen below in Figure 29. Note that it does not
include every line of code, but it does capture the main steps in the program.

CPE 325: Lab#1 Tutorial © A. Milenkovic 19

Start: ifact(int p)
MAXF: Maximum integer for

finding factoriels v

Declare loop counter j

v Declare temporary result t=1
Declare loop counter i

Declare 16-bit result a
Declare 32-bit result b

p==0 or p==1

j=2
Is i< MAXF ?
a
A 4
a = ifact(i)
b = Ifact(i)
\ 4
\ 4 returnt
Displayi, a, b
N
A 4
\ 4
i=i+l
| T

Figure 29. Flowcharts for Calculating the Factorial

CPE 325: Lab#1 Tutorial

© A. Milenkovic

20

