
 

CPE 325: Lab#2 Tutorial © A. Milenković 1 

CPE 325: Embedded Systems Laboratory 
Laboratory #2 Tutorial  

C Data Types and Their Representation in Memory 
 
Aleksandar Milenković 
Email: milenka@uah.edu 
Web: http://www.ece.uah.edu/~milenka 

Objective:  

This tutorial will familiarize you with different number systems and how to convert 
representations between them. It includes the following topics: 

Converting representations with bases 2, 8, 10, and 16 
Understanding how data are stored in memory 
Understanding the common data types used with the MSP430 

Notes:  

The previous tutorial introducing the TI experimenter’s board and the Code Composer Studio 
software development environment is required for successful completion of this lab. 
Required reading: CPE 323 Review – Data Types and Number Representations in Modern 
Computers.  

Contents: 

1 Numerical Base Systems .......................................................................................................... 2 

1.1 Binary, Decimal, and Hexadecimal ................................................................................... 2 

1.2 Converting Using the Windows Calculator ...................................................................... 3 

2 MSP430 Memory ..................................................................................................................... 4 

3 C data Types ............................................................................................................................. 5 

4 References ............................................................................................................................... 5 

 
 

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw01_cpe323_NumberRepresentationReview_Text.pdf
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw01_cpe323_NumberRepresentationReview_Text.pdf


 

CPE 325: Lab#2 Tutorial © A. Milenković 2 

1 Numerical Base Systems 

In microcontroller applications, it is very common for numerical values to be represented in 
several different bases. In physical memory, values are stored in binary; however, representing 
large binary values can be cumbersome and inefficient. Often these values are represented in 
either octal or hexadecimal forms. It is important to be able to quickly interpret and convert 
values between binary, octal, hexadecimal, and decimal bases. 

1.1 Binary, Decimal, and Hexadecimal 

Different numeral systems can be used to express one value in multiple ways. While we 
generally use and think in base 10 (decimal), digital hardware exists in only two states – on or 
off. For that reason, it makes sense to use base 2 (binary) to represent values kept in digital 
hardware. 
We are most familiar with using the decimal number system where each order of magnitude 
represents another power of 10. For instance, the value 163 in decimal is equal to: 

 (1 x 102) + (6 x 101)  + (3 x 100)  = 163 

 

In the binary system, instead of each order of magnitude being a power of 10, they are a power 
of 2. The same value that we represented as 163 in decimal is represented as 10100011 in 
binary: 
(1 x 27) + (0 x 26) + (1 x 25) + (0 x 24) + (0 x 23) + (0 x 22) + (1 x 21) + (1 x 20) = 101000112 = 16310 

 

You can see that representing large values in binary can be cumbersome. You can quickly 
convert between binary and octal or hexadecimal in order to use fewer digits to represent the 
same number. The conversion is simple, and the method should become second nature. To 
represent a binary number in hexadecimal, group the binary value digits in groups of four.  

 



 

CPE 325: Lab#2 Tutorial © A. Milenković 3 

You can then convert each block of four values to its corresponding hex value as seen in the 
following chart: 

0 0000 
 

8 1000 

1 0001 
 

9 1001 

2 0010 
 

A 1010 

3 0011 
 

B 1011 

4 0100 
 

C 1100 

5 0101 
 

D 1101 

6 0110 
 

E 1110 

7 0111 
 

F 1111 

Therefore, the same binary value shown above can be represented in hexadecimal as A3. 

 

You can easily go from hexadecimal to binary by using the reverse method. Each hex digit 
breaks out into four binary digits. Likewise, the method can be used with octal by grouping 
three instead of four binary digits per octal digit. 

1.2 Converting Using the Windows Calculator 

The Windows calculator can be accessed by typing in Calculator into the search line. Once the 
calculator application has been started, select Programmer view to get screen shown in Figure 
1. 



 

CPE 325: Lab#2 Tutorial © A. Milenković 4 

 

Figure 1. Windows Calculator Application 

Side fields HEX, DEC, OCT, and BIN allow you to select a desired numeral system. By changing 
them you can rapidly convert an entered value from one base to another.  

2 MSP430 Memory 

Since we will be using the MSP430 architecture in this class, it is good to become familiarized 
with the way the MSP430 stores and recalls memory. You will learn detailed information about 
the MSP430 architecture in class; however, there are a few basic concepts that you should 
review for the lab. 
As you likely already know, each binary digit in memory is referred to as a bit. Likewise, a byte is 
formed of 8 sequential bits and is smallest addressable unit in memory. The MSP430 memory 
can be viewed as an array or bytes or an array of 2-byte “words.” In memory, 2-byte words are 
aligned to even addresses, i.e., each word begins at an even address. Another important policy 
defines how multi-byte objects are stored in memory. The MSP430 uses a “little endian” 
placement policy where the first byte of a word (the least significant byte) is at the lower 
address in memory (see Figure 2). 



 

CPE 325: Lab#2 Tutorial © A. Milenković 5 

 

Figure 2. Little-endian Placement 

 

While using the Code Composer Studio, you may also occasionally notice that registers appears 
to be 20 bits long. This is part of the extended architecture that allows each register to store a 
20 bits of memory address. This is useful for easily pointing to addresses in memory. In the first 
lab this was disabled when the code and data models were changed to small. 

3 C data Types 

In this lab, you will use the C language to write programs for your MSP430. It is important to 
become familiar with the different data types and how they appear in memory. Below is a list of 
some of the data types that you will be using in this lab: 
 

Data type Size Characteristic 

bool 1 byte true/false flag 

char 1 byte ASCII translated value 

int 2 bytes Signed integer (2's complement)  

unsigned int 2 bytes Unsigned integer  

long int 4 bytes Signed (2’s complement) 

float 4 bytes 
Single-precision floating-point  
(sign bit, 8-bit offset exponent, 23-bit mantissa) 

 
You should become familiar with each of these data types, especially how they look in memory. 
One of the key concepts that you should recognize is that the same values in memory can be 
interpreted different ways depending on its associated data type. You will learn more about 
these data types as you explore their output in this lab while using the C printf statement. 

4 References 

• Read pages 25 – 29 in John H. Davies’ MSP430 Microcontroller Basics. 
• More information for the printf function, float.h library, and limits.h library can be found 
at http://www.cplusplus.com 

http://www.cplusplus.com/

