
 

CPE 325: Lab #3 Tutorial  © A. Milenković 1 

CPE 325: Embedded Systems Laboratory 
Laboratory #3 Tutorial  

Digital I/O on Experimenter’s Board: LEDs and Switches 
Aleksandar Milenković 
Email: milenka@uah.edu 
Web: http://www.ece.uah.edu/~milenka 

Objective:  

This tutorial will help introduce MSP430 parallel ports and how they are used for interfacing 
LEDs and switches. Specifically, you will learn the following topics: 

Hardware development platform MSP430FG4618/F2013 Experimenter Board 
I/O Interfacing Using Parallel Ports (LEDs and switches) 
Software delays (time estimation) 

Notes:  

All previous tutorials are required for successful completion of this lab, especially, the tutorials 
introducing the TI Experimenter’s board and the Code Composer Studio software development 
environment. 
Required reading: Introduction to the TI’s MSP430FG4618_F2013 Experimenter’s Board 

Contents: 

1 Digital Input/Output Introduction ........................................................................................... 2 

2 Turning on a LED Project Using C Language ............................................................................ 3 

3 Blinking LEDs Using C Language .............................................................................................. 4 

4 Interfacing Buttons (Switches) ................................................................................................ 6 

5 References ............................................................................................................................... 8 

 
 

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka


 

CPE 325: Lab #3 Tutorial  © A. Milenković 2 

1 Digital Input/Output Introduction 

A microcontroller interacts in many ways with the system in which it is embedded. It may 
receive inputs from a human through switches, buttons, sensors, etc. In the opposite direction, 
the microcontroller may control external devices such as, light-emitting diodes (LEDs), seven-
segment displays, liquid-crystal displays (LCDs), or actuators (e.g., motors). The MSP430 
microcontrollers can drive these external devices directly if they work from the same voltage 
and draw a sufficiently small current. Heavier loads require dedicated circuitry to drive them. 
 
The most straightforward form of input/output is through the digital input/output ports using 
binary values (0 or 1). The primary way how the MSP430 interfaces the rest of the world is 
through 8-bit parallel ports. The actual number of physical parallel ports varies with device type 
and can range from two to ten 8-bit parallel ports, typically marked P1-P10. The MSP430 
parallel ports are bit-configurable and can work as standard digital input/outputs or as special-
function ports (e.g., serve as analog inputs for an analog-to-digital converter or timer output). 
The parallel ports are directly connected to the chip pins. A parallel port encompasses multiple 
registers, including: 

 PxIN - input register, reading it returns the logical values on the pins (determined by the 
external signals); 

 PxOUT - output register, writing it sends the value to the pins; 

 PxDIR - direction register, configures pins as inputs or outputs (e.g., P2DIR.BIT1=0 
configures bit 1 of port P2 as an input pin; P2DIR.BIT2=1 configures bit 2 of port P2 as an 
output pin). 

 PxSEL - selection register, this allows the user to change the register from the standard 
digital I/O to a special function. On the hardware diagram, when multiple symbols are 
seen on a pin, this will select between those functions. The default setting is the digital 
input (all direction bits are initially cleared). 

 Ports P1 and P2 also have ability to serve as sources of interrupts and several registers 
are associated with this function. These are: PxIE – Port x Interrupt Enable register for 
enabling/disabling interrupts, PxIFG – Port x Interrupt Flag register for tracking pending 
requests, and PxIES – Port x Interrupt Edge Select register for selecting type of event 
that triggers an interrupt – rising edge at the port input (0 -> 1) or falling edge (1 -> 0). 

 
Our development platform includes several LEDs (LED1-LED4) and switches (SW1 and SW2). The 
LEDs can be turned on and off by writing digital 1 or 0 to the appropriate output port registers. 
Therefore, in order to turn a LED on, first the I/O port should be set to output direction, and 
then either a 0 or a 1 should be written to the output register. In this lab, LEDs are turned on 
and off with specific frequencies. Let us develop a program to blink a LED. 



 

CPE 325: Lab #3 Tutorial  © A. Milenković 3 

2 Turning on a LED Project Using C Language 

This section defines the problem that will be solved by the "Turn on a LED" application. Your 
task is to write a C program that will turn on the LED1 on the TI's MSP430FG4618/F2013 
Experimenter Board.  

Step 1. Analyze the assignment. 

In order to better understand the problem, we will first study schematics of the 
MSP430FG4618/F2013 Experimenter Board. This board includes TI's MSP430 microcontrollers 
(MSP430FG4618 and MSP430F2013), capacitive touch pad, serial RS232 port, 4 leds (LED1-
LED4), 2 switches (SW1 and SW2), a microphone, a buzzer and several extension slots that 
allow an easy access to all microcontroller ports. A detailed schematic of the board is provided 
in the following document: 
http://www.ece.uah.edu/~milenka/msp430/TI-MSP430FG4618-EXPB/TI-MSP430FG4618-
EXPB_schematic.pdf 

Step 2. Open the schematic file. 

In the schematic see how the ports are actually connected to physical LEDs (a diode through a 

resistor) (

 

 

Figure 1). What microcontroller port pins are connected to LED1 and LED2? A LED is on when 
the current is flowing through it and it is off when there is no current. How should we drive the 
corresponding ports to have the current flow? 

 

 

http://www.ece.uah.edu/~milenka/msp430/TI-MSP430FG4618-EXPB/TI-MSP430FG4618-EXPB_schematic.pdf
http://www.ece.uah.edu/~milenka/msp430/TI-MSP430FG4618-EXPB/TI-MSP430FG4618-EXPB_schematic.pdf


 

CPE 325: Lab #3 Tutorial  © A. Milenković 4 

Figure 1. LED1 and LED2 connections on the TI's experimenter's board. 

Step 3. Develop a plan.  

From the schematic we see that if we want LED1 on, we should provide a logical '1' at the 
output port of the microcontroller (port P2.2), and a logical '0,' if we want LED1 to be off. We 
could take several approaches to solving this problem. Figure 2 illustrates one such approach - 
after initializing the port P2.2 as output (P2DIR=00000100), setting P2.2 to logic '1', the program 
will spend all its time in an infinite loop (Figure 2).  
 
 
 
 
/*------------------------------------------------------------------------------ 1 
 * File:        Lab3_D1.c (CPE 325 Lab3 Demo code) 2 
 * Function:    Turning on LED1(MPS430FG4618) 3 
 * Description: This C program turns on LED1 connected to P2.2 by writing 1 4 
 *              (P2.2 = 1). 5 
 * Clocks:      ACLK = 32.768kHz, MCLK = SMCLK = default DCO (~1 MHz) 6 
 * 7 
 *                           MSP430xG461x 8 
 *                       ----------------- 9 
 *                   /|\|                 | 10 
 *                    | |                 | 11 
 *                    --|RST              | 12 
 *                      |             P2.2|-->LED1(GREEN) 13 
 *                      |                 | 14 
 * Input:       None 15 
 * Output:      LED1 is turned on 16 
 * Author:      Aleksandar Milenkovic, milenkovic@computer.org 17 
 *              Mounika Ponugoti, mp0046@uah.edu 18 
 *------------------------------------------------------------------------------*/ 19 
#include  <msp430xG46x.h> 20 
 21 
void main(void) 22 
{ 23 
    WDTCTL = WDTPW + WDTHOLD;   // Stop watchdog timer 24 
    P2DIR |= 0x04;              // Set P2.2 to output direction (0000_0100) 25 
    P2OUT |= 0x04;              // Set P2OUT to 0000_0100b (LED1 is ON) 26 
    for (;;);                   // Infinite loop 27 
} 28 

Figure 2. Turn-on an LED Using C Code (Lab3_D1.c) 

3  Blinking LEDs Using C Language 

This section defines the problem that will be solved by the "Blink the LEDs" application. Your 
task is to write C program that will alternately blink the LED1 and LED2 on the TI's 
MSP430FG4618/F2013 Experimenter Board with 1 Hz frequency, i.e., the LED1/LED2 will be on/ 
off for about 0.5 sec.  
 



 

CPE 325: Lab #3 Tutorial  © A. Milenković 5 

We could take several approaches to blink the LEDs. The simplest one is to toggle the port P2.2 
and P2.1 and have 0.5 seconds delay in software as shown in Figure 3 (Lab3_D2.c). After 
initializing the microcontroller, our program will spend all its time in an infinite loop (LED1 and 
LED2 should be repeatedly blinking alternatively). Inside a loop we will toggle the ports P2.1 
and P2.2 and then wait for approximately 0.5s. The port toggling can be done using an XOR 
operation of the current value of the port (P2OUT) and the constant 0x06, i.e., (P2OUT=P2OUT 
xor 0x06). Software delay of 0.5s can be implemented using an empty loop with a certain 
number of iterations (see the for loop in Figure 3). 
 
To exactly calculate the software delay we need to know the number of clock cycles to execute 
one iteration of the for loop and the clock cycle time. The total number of clock cycles taken to 
execute the entire loop can be calculated by multiplying the number of clock cycles taken for 
one iteration of the loop with the number of iterations. In Figure 3, one iteration of the for loop 
takes 10 clock cycles and the loop counter is 50,000. Thus, it takes 10*50,000 = 500,000 clock 
cycles to execute the for loop (Note: when the counter is initialized in the for loop, first 
iteration takes some extra clock cycles. Since this is only for one time, it is not considered in our 
calculation for simplicity).  
 
Determining clock cycle time requires in-depth understanding of the FLL-Clock module of the 
MSP430 which is beyond the scope of this tutorial. We note that the processor clock frequency 
is approximately 1 MHz for our configuration, so the clock cycle time is 1µs. The total delay is 
thus 500,000*1µs=0.5s.  
 
/*------------------------------------------------------------------------------ 1 
 * File:        Lab3_D2.c (CPE 325 Lab3 Demo code) 2 
 * Function:    Blinking LED1 and LED2 (MPS430FG4618) 3 
 * Description: This C program toggle LED1 and LED2 at 1Hz by xoring P2.1 and 4 
 *              P2.2 inside a loop. The LEDs are on when P2.1=1 and P2.2=1. 5 
 *              The LED1 is initialized to be off and LED2 to be on. 6 
 * Clocks:      ACLK = 32.768kHz, MCLK = SMCLK = default DCO (~1 MHz) 7 
 * 8 
 *                           MSP430xG461x 9 
 *                       ----------------- 10 
 *                   /|\|                 | 11 
 *                    | |                 | 12 
 *                    --|RST              | 13 
 *                      |             P2.2|-->LED1(GREEN) 14 
 *                      |             P2.1|-->LED2(YELLOW) 15 
 *                      |                 | 16 
 * Input:       None 17 
 * Output:      LED1 and LED2 blinks alternately at 1Hz frequency 18 
 * Author:      Aleksandar Milenkovic, milenkovic@computer.org 19 
 *              Mounika Ponugoti, mp0046@uah.edu 20 
 *------------------------------------------------------------------------------*/ 21 
#include <msp430xG46x.h> 22 
 23 
void main(void) 24 
{ 25 
    WDTCTL = WDTPW + WDTHOLD;   // Stop watchdog timer 26 



 

CPE 325: Lab #3 Tutorial  © A. Milenković 6 

    P2DIR |= BIT2+BIT1;         // Set P2.1 and P2.2 to output direction (0000_0110) 27 
    P2OUT &= ~BIT1;             // LED2 is OFF 28 
    P2OUT |= BIT2;              // LED1 is ON 29 
    unsigned int i = 0; 30 
    while(1){                   // Infinite loop 31 
        for (i = 0; i < 50000; i++); // Delay 0.5s 32 
                                // 0.5s on, 0.5s off => 1/(1s) = 1Hz 33 
        P2OUT ^= (BIT1+BIT2);   // Toggle LED1 and LED2 34 
    } 35 
} 36 

Figure 3. Blinking the LEDs Every Second (Lab3_D2.c) 

We can step through the program using the Code Composer Studio debugger as in the previous 
labs. As you step through the program observe the Disassembly, Register View, and Memory 
View windows, and answer the following questions: 

What is the starting address of the program?  
How many clock cycles does each line of code take to execute? 

Observe the contents of memory location and registers as you step through the program. What 
is the content of the memory location at the address 0xFFFE? What are addresses of the 
special-purpose registers P2DIR and P2OUT? Monitor the contents of these locations as you 
walk through your program. Set breakpoints to move easier through your program. 

4 Interfacing Buttons (Switches) 

Often, we would like to trigger a certain task in embedded systems by pressing a button or 
switch. Here we will learn how to interface a switch, how to detect that it is pressed and how to 
detect that it is released. First, let us look at the TI Experimenter's board development platform 
schematic (Figure 4) that illustrates how the buttons are connected to the MSP430. We can see 
two switches S1 and S2. The lines SW1 and SW2 that are connected to the MSP430’s port one 
pins P1.0 and P1.1, respectively (see Figure 5). When the switches are not pressed the inputs 
SW1 and SW2 are at logic 1 level (VCC) – there is an open circuit and the voltage level at SW1 
and SW2 is equal to DVCC, which is power supply of the board. When the switches are pressed, 
SW1 and SW2 are connected to the ground and port inputs are at logic 0 (GND). This may seem 
counterintuitive, but it should reinforce the habit of becoming familiar with your hardware 
schematic before programming. 



 

CPE 325: Lab#3 Tutorial © A. Milenković 7 

 

Figure 4. MSP430 Experimenter Board Switch Schematic 

 

Figure 5. MSP430 SW1 and SW2 Pin-outs 

When interfacing switches we must take care that we properly detect whether a switch is 
pressed. Typically, we need (i) to detect that a switch has been pressed, (ii) to debounce it 
(apply software delay to ensure that is indeed pressed, rather than a faulty detection caused by 
noise), and (iii) to detect that it has been released. An example of the noise created by the 
action of a switch pressing can be seen in Figure 6 (note that in this example, pressed switch 
generates logic 1). If not programmed correctly, our application could think that each spike was 
an individual press of the switch, which could be detrimental to the functionality of the 
application. 



 

CPE 325: Lab#3 Tutorial © A. Milenković 8 

 

Figure 6. Typical Oscilloscope Reading of Switch Input 

We can individually examine the P1IN bit 0 status to see if SW1 has been pressed. If it has 
indeed been pressed (bit 0 of P1IN is 0), we execute a loop to wait for a short period of time 
(~20 ms) to avoid faulty detections that may be caused by electrical noise. After the software 
delay, we validate that the input port pin is still at 0; if yes, that means that the switch is indeed 
pressed. We may keep the switch pressed for a longer period of time, and we often want to 
ensure that a switch is released before we go to process an event that may be triggered by this 
detection.  
Figure 7 shows a program that turns LED1 on when the switch SW1 is pressed and it is keeps it 
on as long as SW1 is pressed. When the switch is released, LED1 is turned off. 
 
/*------------------------------------------------------------------------------ 1 
 * File:        Lab3_D3.c (CPE 325 Lab3 Demo code) 2 
 * Function:    Turning on LED1 when SW1 is pressed (MPS430FG4618) 3 
 * Description: This C program turns on LED1 connected to P2.2 when the SW1 is 4 
 *              pressed. SW1 is connected to P1.0 and when the switch is pressed 5 
 *              it is logic 0 (check the schematic). To avoid faulty detection 6 
 *              of switch press delay of 20ms is added before turning on the LED1. 7 
 * Clocks:      ACLK = 32.768kHz, MCLK = SMCLK = default DCO (~1 MHz) 8 
 * 9 
 *                           MSP430xG461x 10 
 *                       ----------------- 11 
 *                   /|\|                 | 12 
 *                    | |                 | 13 
 *                    --|RST              | 14 
 *                      |             P2.2|-->LED1(GREEN) 15 
 *                      |             P1.0|<-- SW1 16 
 *                      |                 | 17 
 * Input:       Press SW1 18 
 * Output:      LED1 is turned on when SW1 is pressed 19 
 * Authors:     Aleksandar Milenkovic, milenkovic@computer.org 20 



 

CPE 325: Lab#3 Tutorial © A. Milenković 9 

 *              Mounika Ponugoti, mp0046@uah.edu 21 
 *------------------------------------------------------------------------------*/ 22 
#include <msp430xG46x.h> 23 
 24 
#define SW1 P1IN&BIT0 25 
 26 
void main(void) 27 
{ 28 
    WDTCTL = WDTPW + WDTHOLD;             // Stop watchdog timer 29 
    P2DIR |= BIT2;                        // Set P2.1 to output direction (0000_0100) 30 
    P2OUT &= ~BIT2;                       // LED1 is OFF 31 
    int i = 0; 32 
    for (;;) {                            // Infinite loop 33 
        if ((SW1) == 0) {                 // If SW1 is pressed 34 
            for (i = 0; i < 2000; i++);   // Debounce ~20 ms 35 
            if ((SW1) == 0) P2OUT |= BIT2;// SW1 pressed, turn LED1 on 36 
            while ((SW1) == 0);           // Wait while SW1 is pressed 37 
            P2OUT &= ~0x04;               // Turn LED1 off 38 
        } 39 
    } 40 
} 41 

Figure 7. Example of Turning on LED1 when SW1 is Pressed (Lab3_D3.c) 

5 References 

It is crucial that you become familiar with the basics of how digital ports work - how to set their 
output direction, read from or write to the ports, set interrupts, and set up their special 
functions. We will be using these features to control hardware and communication between 
devices throughout this class. Please reference the following material to gain more insight: 

 The MSP430 Experimenter's Board hardware schematic 

 Chapter 11 in the MSP430FG4618 user's guide (pages 407-414) 

 Chapter 7 in the John H. Davies' MSP430 Microcontroller Basics 
 


