

CPE 325: Lab#4 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #4 Tutorial

Introduction to MSP430 Assembly Language Programming

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:

This tutorial will help you get started with MSP30 assembly program development. In this lab,
you will learn the following topics:

Assembly language programming
Creating an application project using assembly language programming
Debugging the application using CCS Debug

Notes:

All previous tutorials introducing the TI Experimenter’s Board and the Code Composer Studio
software development environment are required for successful completion of this lab. Class
materials required are: MSP430 ISA and MSP430 Assembly Language Programming.

Contents:

1 Problem Statement: Count Number of Characters ‘E’ in a String ... 2

2 Counting Characters .. 2

2.1 Assembly Program.. 3

2.2 Creating an Application Project ... 5

2.3 Program Simulation and Debugging .. 5

3 References ... 6

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw02_cpe323_MSP430_ISA_Text.pdf
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw03_cpe323_MSP430_Assembly_Text.pdf

CPE 325: Lab#4 Tutorial © A. Milenković 2

1 Problem Statement: Count Number of Characters ‘E’ in a String

This section defines the problem that will be solved by the Count Characters program using the
MSP430 assembly language. Our task is to develop an assembly program that will scan a given
string of characters, for example, “HELLO WORLD, I AM THE MSP430!”, and find the number of
appearances of the character ‘E’ in the string. A counter that records the number of characters
‘E’ is then written to the parallel port P1. The port should be configured as an output port, and
the binary value of the port will correspond to the counter value.

Step 1. Analyze the assignment.
To solve this assignment, let us first analyze the problem statement. Your task is to write an
assembly program that will count the number of characters ‘E’ in a string. First, the problem
implies that we need to allocate space in memory that will keep the string “HELLO WORLD, I
AM THE MSP430!”. The string has 29 characters and they are encoded using the ASCII table.
Two single quotes at the end allocate a NULL character (0x00). To allocate and initialize a string
in memory we can use an assembly language directive .string (or .byte).

myStr .string "HELLO WORLD, I AM THE MSP430!", ''

A label myStr marks the beginning of this string in memory, and the value of this symbol
corresponds to the starting address of the string. When assembler sees the .string directive,
it will allocate the space in memory required for the string that follows and initialize the
allocated space with corresponding ASCII characters. Including the ASCII NULL character at the
end of the string (ascii(NULL)=0x00), the total number of bytes occupied by this directive
is 30.

Step 2. Develop a plan.
Our task is now to write a small program that will scan the string, character by character, check
whether the current character is equal to the character ‘E’, and if yes, increment a counter. The
string scan is done in a program loop. The program ends when we reach the end of the string,
which is detected when the current character is equal to the NULL character (0x00). To scan the
string, we will use a register to point to the current character in the string. This pointer register
is initialized at the beginning of the program to point to the first character in the string. The
pointer will be incremented in each iteration of the program loop. Another register, initialized
to zero at the beginning, will serve as the counter, and it is incremented every time the current
character is ‘E’. After we exit the program loop, the current value of the counter will be written
to the port P1, which should be initialized as an output port.
NOTE: It is required that you are familiar with the MSP430 instruction set and addressing
modes to be able to solve this problem. Also, we will assume that the string is no longer than
255 characters, so the result can be displayed on an 8-bit port.

2 Counting Characters

This section will go more in depth into how to write the assembly code to solve this problem in
addition to how to build and link the code for the MSP430.

CPE 325: Lab#4 Tutorial © A. Milenković 3

2.1 Assembly Program

The assembly code for this program can be seen on the next page. However, here is a brief
description of how the code works.

The comments in a single line start with a column character (;). Multi-line comments are not
supported. Note the proceeding (-) characters are used to indicate different sections of the
assembly file and are good practice for clean readable code. In line 11, you will notice an
assembly pre-processor directive that specifies a header file to be included in the source code.
The header file includes all macro definitions, for example, special function register addresses
(WDTCTL), and control bits (WDTPW+WDTHOLD). Next, in line 17 we allocate the string that is
going to be counted. As explained, this directive will allocate 30 bytes in memory and initialize it
with the string content, placing the ASCII codes for the string characters in the memory.

So how does the program execute on an MSP430? Upon powering-up the MSP430 control logic
always generates a reset interrupt request (it is the highest priority interrupt request). The
value stored at the address 0xFFFE (the last word in the 64KB address space) is reserved to keep
the starting address of the reset handler (interrupt service routine), and the first thing that the
microcontroller does is to fetch the content from this address and put it in the program counter
(PC, register R0). Thus, the starting address of our program corresponding to the entry point
called RESET should be stored at location 0xFFFE. Line 57 declares the reset vector that is then
initialized with the value that corresponds to the symbol RESET, which is the starting address of
our program.

The first instruction on line 26 initializes the stack pointer register. However, our program does
not use the stack, so we can ignore this instruction for now. The instruction on line 27 will set
certain control bits of the watchdog timer control register (WDTCTL) to disable it. The watchdog
timer by default is active upon reset, generating periodic system resets if left unattended. As
this functionality is not needed in our program, we need to disable it.

Parallel ports in the MSP430 microcontroller can be configured as either input or output ports.
A control register PxDIR determines whether the port is an input or an output port (we can
configure each individual port pin). Our program drives all eight pins of the port P1, so it should
be configured as an output port by setting each individual bit of the direction register to 1
(P1DIR=0xFF). Register R4 is loaded to point to the first character in the string. Register R5, the
counter, is cleared before starting the main program loop.

The loop starts at the next label called gnext. We use the autoincrement addressing mode to
read a new character (one byte) from the string as seen in line 36. The current character is kept
in register R6. We then compare the current character with the NULL character on line 37. If it
is the NULL character, the end of the string has been reached and we exit the loop (JEQ lend).
Pay attention that we used JEQ instruction. Why? If it is not the end of the string, we compare
the current character with ‘E’. If there is no match we go back to the first instruction in the

CPE 325: Lab#4 Tutorial © A. Milenković 4

loop. Otherwise, we increase the value of the counter (register R5). Finally, once the end of the
string has been reached, we move the lower byte from R5 to the parallel port 1 on line 44.

;--- 1
; File : Lab4_D1.asm (CPE 325 Lab4 Demo code) 2
; Function : Counts the number of characters E in a given string 3
; Description: Program traverses an input array of characters 4
; to detect a character 'E'; exits when a NULL is detected 5
; Input : The input string is specified in myStr 6
; Output : The port P1OUT displays the number of E's in the string 7
; Author : A. Milenkovic, milenkovic@computer.org 8
; Date : August 14, 2008 9
;--- 10
 .cdecls C,LIST,"msp430.h" ; Include device header file 11
 12
;--- 13
 .def RESET ; Export program entry-point to 14
 ; make it known to linker. 15
 16
myStr: .string "HELLO WORLD, I AM THE MSP430!", '' 17
;--- 18
 .text ; Assemble into program memory. 19
 .retain ; Override ELF conditional linking 20
 ; and retain current section. 21
 .retainrefs ; And retain any sections that have 22
 ; references to current section. 23
 24
;--- 25
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 26
 mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29
; Main loop here 30
;--- 31
main: bis.b #0FFh,&P1DIR ; configure P1.x output 32
 mov.w #myStr, R4 ; load the starting address of the string 33
into R4 34
 clr.b R5 ; register R5 will serve as a counter 35
gnext: mov.b @R4+, R6 ; get a new character 36
 cmp #0,R6 ; is it a null character 37
 jeq lend ; if yes, go to the end 38
 cmp.b #'E',R6 ; is it an 'E' character 39
 jne gnext ; if not, go to the next 40
 inc.w R5 ; if yes, increment counter 41
 jmp gnext ; go to the next character 42
 43
lend: mov.b R5,&P1OUT ; set all P1 pins (output) 44
 bis.w #LPM4,SR ; LPM4 45
 nop ; required only for Debugger 46
 47
 48
;--- 49
; Stack Pointer definition 50
;--- 51

CPE 325: Lab#4 Tutorial © A. Milenković 5

 .global __STACK_END 52
 .sect .stack 53
 54
;--- 55
; Interrupt Vectors 56
;--- 57
 .sect ".reset" ; MSP430 RESET Vector 58
 .short RESET 59
 .end 60
 61

Figure 1. MSP430 Assembly Code for Count Character Program (Lab4_D1.asm)

2.2 Creating an Application Project

Please consult the first tutorial on how to create a new workspace and project.

Step 1. Choose Project>Create New CCS Project. This time you need to select Empty Assembly-
only Project and save it as Lab4_D1.

Step 2. Download and copy Lab4_D1.asm into the project and delete main.asm by right clicking
it and selecting delete or by clicking the delete key.

Step 3. Right-Click the project and select Properties then set all options as you did in Lab 1.

Step 4. Select the source file Lab4_D1.asm and compile it. (Right-Click->Build). Click on the list
file Lab4_D1.lst to see report generated by the assembler.

Step 5. Link the program . The application is ready for debugging.

2.3 Program Simulation and Debugging

In this section we will discuss how to debug the program.

Step 1. Click the icon.

Step 2. Step through the program step by step (use F6). Observe the Disassembly, Register
View, and Memory View windows. Answer the following questions.

What is the starting address of the program?
How many clock cycles does each instruction take to execute? How do the clock cycles
taken by each instruction depend on addressing mode?

Hint: http://processors.wiki.ti.com/index.php/Profile_clock_in_CCS

Step 3. Observe the contents of memory location and registers as you step through the
program. What is the content of the memory location at the address 0xFFFE?

What are the addresses of the special-purpose registers P1DIR and P1OUT? Monitor the
contents of these locations as you walk through your program. Set breakpoints to move easier
through your program.

http://processors.wiki.ti.com/index.php/Profile_clock_in_CCS

CPE 325: Lab#4 Tutorial © A. Milenković 6

 Figure 2. Code Composer Studio Debugging Window

3 References

It is important to be comfortable with the MSP430 instruction set and addressing modes. Your
class readers and the MSP430 user’s guide contain invaluable information that you will need to
understand in order to effectively program the MSP430. Please read the following:

 MSP430 ISA

 MSP430 Assembly Language Programming

 Chapter 5, pages 119 - 146 in John H. Davies' MSP430 Microcontroller Basics

 Sections 4.4 and 4.5 in the MSP430FG4618 User's Guide on Addressing modes and the
instruction set (pages 131 - 173)

http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw02_cpe323_MSP430_ISA_Text.pdf
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw03_cpe323_MSP430_Assembly_Text.pdf

