

CPE 325: Lab#5 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #5 Tutorial

MSP430 Assembly Language Programming
Subroutines, Passing Parameters, and Hardware Multiplier

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:

This tutorial will continue the introduction to assembly language programming with the
MSP430 hardware. In this lab, you will learn the following topics:

Developing subroutines in assembly language
Passing parameters to subroutines using registers and the stack
Working with hardware multiplier on the MSP430

Notes:

All previous tutorials are required for successful completion of this lab, especially, the tutorials
introducing the TI Experimenter’s Board and the Code Composer Studio software development
environment.

Contents:

1 Subroutines .. 2

1.1 Subroutine Nesting ... 2

1.2 Parameter Passing .. 3

2 Hardware Multiplier .. 9

3 References ... 11

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka

CPE 325: Lab#5 Tutorial © A. Milenković 2

1 Subroutines

In a given program, it is often needed to perform a particular sub-task many times on different
data values. Such a subtask is usually called a subroutine. For example, a subroutine may sort
numbers in an integer array or perform a complex mathematical operation on an input variable
(e.g., calculate sin(x)). It should be noted, that the block of instructions that constitute a
subroutine can be included at every point in the main program when that task is needed.
However, this would be an unnecessary waste of memory space. Rather, only one copy of the
instructions that constitute the subroutine is placed in memory and any program that requires
the use of the subroutine simply branches to its starting location in memory. The instruction
that performs this branch is named a CALL instruction. The calling program is called CALLER and
the subroutine called is called CALLEE.

The instruction that is executed right after the CALL instruction is the first instruction of the
subroutine. The last instruction in the subroutine is a RETURN instruction, and we say that the
subroutine returns to the program that called it. Since a subroutine can be called from different
places in a calling program, we must have a mechanism to return to the appropriate location
(the first instruction that follows the CALL instruction in the calling program). At the time of
executing the CALL instruction we know the program location of the instruction that follows the
CALL (the program counter or PC is pointing to the next instruction). Hence, we should save the
return address at the time the CALL instruction is executed. The way in which a machine makes
it possible to call and return from subroutines is referred to as its subroutine linkage method.
The simplest subroutine linkage method is to save the return address in a specific location. This
location may be a register dedicated to this function, often referred to as the link register.
When the subroutine completes its task, the return instruction returns to the calling program
by branching indirectly through the link register.

The CALL instruction is a special branch instruction and performs the following operations:

Stores the contents of the PC in the link register
Branches to the target address specified by the instruction.

The RETURN instruction is a special branch instruction that performs the following operations:
Branches to the address contained in the link register.

1.1 Subroutine Nesting

A common programming practice, called subroutine nesting, is to have one subroutine call
another. In this case, the return address of the second call is also stored in the link register
destroying the previous contents. Hence, it is essential to save the contents of the link register
in some other location before calling another subroutine. Subroutine nesting can be carried out
to any depth. For example, imagine the following sequence: subroutine A calls subroutine B,
subroutine B calls subroutine C, and finally subroutine C calls subroutine D. In this case, the last
subroutine D completes its computations and returns to the subroutine C that called it. Next, C
completes its execution and returns to the subroutine B that called it and so on. The sequence
of returns is as follows: D returns to C, C returns to B, and B returns to A. That is, the return

CPE 325: Lab#5 Tutorial © A. Milenković 3

addresses are generated and used in the last-in-first-out order. This suggests that the return
addresses associated with subroutine calls should be pushed onto a stack. Many processors do
this automatically. A particular register is designated as the stack pointer, or SP, that is implicitly
used in this operation. The stack pointer points to a stack called the processor stack.

The CALL instruction is a special branch instruction and performs the following operations:

Pushes the contents of the PC on the top of the stack
Updates the stack pointer
Branches to the target address specified by the instruction

The RETURN instruction is a special branch instruction that performs the following operations:
Pops the return address from the top of the stack into the PC
Updates the stack pointer.

1.2 Parameter Passing

When calling a subroutine, a calling program needs a mechanism to provide to the subroutine
the input parameters, the operands that will be used in computation in the subroutine or their
addresses. Later, the subroutine needs a mechanism to return output parameters, the results
of the subroutine computation. This exchange of information between a calling program and a
subroutine is referred to as parameter passing. Parameter passing may be accomplished in
several ways. The parameters can be placed in registers or in memory locations, where they can
be accessed by subroutine. Alternatively, the parameters may be placed on a processor stack.
Let us consider the following program shown in Figure 1. We have two integer arrays arr1 and
arr2. The program finds the sum of the integers in arr1 and displays the result on the ports P1
and P2, and then finds the sum of the integers in arr2 and displays the result on the ports P3
and P4. It is obvious that we can have a single subroutine that will perform this operation and
thus make our code more readable and reusable. The subroutine needs to get three input
parameters: what is the starting address of the input array, how many elements the array has,
and where to display the result. In this example, the subroutine does not return any output
parameter to the calling program.

;--- 1
; File : Lab5_D1.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays 3
; Description: The program initializes ports, 4
; sums up elements of two integer arrays and 5
; display sums on parallel ports 6
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 7
; Output : P1OUT&P2OUT displays sum of arr1, P3OUT&P4OUT displays sum of arr2 8
; Author : A. Milenkovic, milenkovic@computer.org 9
; Date : September 14, 2008 10
;--- 11
 .cdecls C,LIST,"msp430.h" ; Include device header file 12
 13
;--- 14
 .def RESET ; Export program entry-point to 15
 ; make it known to linker. 16
;--- 17

CPE 325: Lab#5 Tutorial © A. Milenković 4

 .text ; Assemble into program memory. 18
 .retain ; Override ELF conditional linking 19
 ; and retain current section. 20
 .retainrefs ; And retain any sections that have 21
 ; references to current section. 22
 23
;--- 24
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 25
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 26
 27
;--- 28
; Main code here 29
;--- 30
main: bis.b #0xFF, &P1DIR ; configure P1.x as output 31
 bis.b #0xFF, &P2DIR ; configure P2.x as output 32
 bis.b #0xFF, &P3DIR ; configure P3.x as output 33
 bis.b #0xFF, &P4DIR ; configure P4.x as output 34
 ; load the starting address of the array1 into the register R4 35
 mov.w #arr1, R4 36
 ; load the starting address of the array2 into the register R5 37
 mov.w #arr2, R5 38
 ; Sum arr1 and display 39
 clr.w R7 ; holds the sum 40
 mov.w #8, R10 ; number of elements in arr1 41
lnext1: add.w @R4+, R7 ; add the current element to sum 42
 dec.w R10 ; decrement arr1 length 43
 jnz lnext1 ; get next element 44
 mov.b R7, P1OUT ; display lower byte of sum of arr1 45
 swpb R7 ; swap bytes 46
 mov.b R7, P2OUT ; display upper byte of sum of arr1 47
 ; Sum arr2 and display 48
 clr.w R7 ; Holds the sum 49
 mov.w #7, R10 ; number of elements in arr2 50
lnext2: add.w @R5+, R7 ; get next element 51
 dec.w R10 ; decrement arr2 length 52
 jnz lnext2 ; get next element 53
 mov.b R7, P3OUT ; display lower byte of sum of arr2 54
 swpb R7 ; swap bytes 55
 mov.b R7, P4OUT ; display upper byte of sum of arr2 56
 jmp $ 57
 58
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 59
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 60
 61
;--- 62
; Stack Pointer definition 63
;--- 64
 .global __STACK_END 65
 .sect .stack 66
 67
;--- 68
; Interrupt Vectors 69
;--- 70
 .sect ".reset" ; MSP430 RESET Vector 71
 .short RESET 72

CPE 325: Lab#5 Tutorial © A. Milenković 5

 .end 73

Figure 1. Array Addition without a Subroutine (Lab5_D1.asm)

Let us next consider the main program (Figure 2) where we pass the parameters through
registers. Passing parameters through the registers is straightforward and efficient. Three input
parameters are placed in registers as follows: R12 keeps the starting address of the input array,
R13 keeps the array length, and R14 defines the display identification (#0 for P1&P2 and #1 for
P3&P4). The calling program places the parameters in these registers, and then calls the
subroutine using the CALL #suma_rp instruction. The subroutine shown in Figure 3 uses register
R7 to hold the sum of the integers in the array. The register R7 may contain valid data that
belongs to the calling program, so our first step should be to push the content of the register R7
on the stack. The last instruction before the return from the subroutine is to restore the original
content of R7. Generally, it is a good practice to save all the general-purpose registers used as
temporary storage in the subroutine as the first thing in the subroutine, and to restore their
original contents (the contents pushed on the stack at the beginning of the subroutine) just
before returning from the subroutine. This way, the calling program will find the original
contents of the registers as they were before the CALL instruction. Other registers that our
subroutine uses are R12, R13, and R14. These registers keep parameters, so we assume we can
modify them (they do not need to preserve their original value once we are back in the calling
program).

;--- 1
; File : Lab5_D2_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using subroutines 3
; Description: The program initializes ports and 4
; calls suma_rp to sum up elements of integer arrays and 5
; display sums on parallel ports. 6
; Parameters to suma_rp are passed through registers, R12, R13, R14. 7
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 8
; Output : P1OUT&P2OUT displays sum of arr1, P3OUT&P4OUT displays sum of arr2 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;--- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
;--- 15
 .def RESET ; Export program entry-point to 16
 ; make it known to linker. 17
 .ref suma_rp 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
;--- 25
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 26
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29

CPE 325: Lab Tutorial #5 © A. Milenković 6

; Main code here 30
;--- 31
main: bis.b #0xFF,&P1DIR ; configure P1.x as output 32
 bis.b #0xFF,&P2DIR ; configure P2.x as output 33
 bis.b #0xFF,&P3DIR ; configure P3.x as output 34
 bis.b #0xFF,&P4DIR ; configure P4.x as output 35
 36
 mov.w #arr1, R12 ; put address into R12 37
 mov.w #8, R13 ; put array length into R13 38
 mov.w #0, R14 ; display #0 (P1&P2) 39
 call #suma_rp 40
 41
 mov.w #arr2, R12 ; put address into R12 42
 mov.w #7, R13 ; put array length into R13 43
 mov.w #1, R14 ; display #0 (P3&P4) 44
 call #suma_rp 45
 jmp $ 46
 47
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 48
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 49
 50
;--- 51
; Stack Pointer definition 52
;--- 53
 .global __STACK_END 54
 .sect .stack 55
 56
;--- 57
; Interrupt Vectors 58
;--- 59
 .sect ".reset" ; MSP430 RESET Vector 60
 .short RESET 61
 .end 62

Figure 2. Array Addition Using suma_rp Subroutine (Lab5_D2_main.asm)

;--- 1
; File : Lab5_D2_RP.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_rp is a subroutine that sums elements of an integer array 4
; Input : The input parameters are: 5
; R12 -- array starting address 6
; R13 -- the number of elements (>= 1) 7
; R14 -- display ID (0 for P1&P2 and 1 for P3&P4) 8
; Output : No output 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;-- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
 .def suma_rp 15
 16
 .text 17
 18

CPE 325: Lab Tutorial #5 © A. Milenković 7

suma_rp: 19
 push.w R7 ; save the register R7 on the stack 20
 clr.w R7 ; clear register R7 (keeps the sum) 21
lnext: add.w @R12+, R7 ; add a new element 22
 dec.w R13 ; decrement step counter 23
 jnz lnext ; jump if not finished 24
 bit.w #1, R14 ; test display ID 25
 jnz lp34 ; jump on lp34 if display ID=1 26
 mov.b R7, P1OUT ; display lower 8-bits of the sum on P1OUT 27
 swpb R7 ; swap bytes 28
 mov.b R7, P2OUT ; display upper 8-bits of the sum on P2OUT 29
 jmp lend ; skip to end 30
lp34: mov.b R7, P3OUT ; display lower 8-bits of the sum on P3OUT 31
 swpb R7 ; swap bytes 32
 mov.b R7, P4OUT ; display upper 8-bits of the sum on P4OUT 33
lend: pop R7 ; restore R7 34
 ret ; return from subroutine 35
 .end 36

Figure 3. Subroutine that Adds up the Elements of the Array (Lab5_D2_RP.asm)

If many parameters are passed, there may not be enough general-purpose registers available
for passing parameters into the subroutine. In this case we use the stack to pass parameters.
Figure 4 shows the calling program (Lab5_D3_main.asm) and Figure 5 shows the subroutine
(Lab5_D3_SP.asm). Before calling the subroutine, we place parameters on the stack using PUSH
instructions (the array starting address, array length, and display id – each parameter is 2 bytes
long). The CALL instruction pushes the return address on the stack. The subroutine then stores
the contents of the registers R7, R6, and R4 on the stack (another 8 bytes) to save their original
content. The next step is to retrieve input parameters (array starting address and array length).
They are on the stack, but to know exactly where, we need to know the current state of the
stack and its organization (how does it grow, and where does SP point to). The original values of
the registers pushed onto the stack occupy 6 bytes, the return address 2 bytes, the display id 2
bytes, and the array length 2 bytes. The total distance between the top of the stack and the
location on the stack where we placed the starting address is 12 bytes. So the instruction MOV
12(SP), R4 loads the register R4 with the first parameter (the array starting address). Similarly,
the array length can be retrieved by MOV 10(SP), R6. The register values are restored before
returning from the subroutine (notice the reverse order of POP instructions). Once we are back
in the calling program, we can free 6 bytes on the stack used to pass parameters.

;--- 1
; File : Lab5_D3_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using a subroutine suma_sp 3
; Description: The program initializes ports and 4
; calls suma_rp to sum up elements of integer arrays and 5
; display sums on parallel ports. 6
; Parameters to suma_sp are passed through the stack. 7
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 8
; Output : P1OUT&P2OUT displays sum of arr1, P3OUT&P4OUT displays sum of arr2 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;--- 12

CPE 325: Lab Tutorial #5 © A. Milenković 8

 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
;--- 15
 .def RESET ; Export program entry-point to 16
 ; make it known to linker. 17
 .ref suma_sp 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
;--- 25
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 26
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29
; Main code here 30
;--- 31
main: bis.b #0xFF,&P1DIR ; configure P1.x as output 32
 bis.b #0xFF,&P2DIR ; configure P2.x as output 33
 bis.b #0xFF,&P3DIR ; configure P3.x as output 34
 bis.b #0xFF,&P4DIR ; configure P4.x as output 35
 36
 push #arr1 ; push the address of arr1 37
 push #8 ; push the number of elements 38
 push #0 ; push display id 39
 call #suma_sp 40
 add.w #6,SP ; collapse the stack 41
 push #arr2 ; push the address of arr1 42
 push #7 ; push the number of elements 43
 push #1 ; push display id 44
 call #suma_sp 45
 add.w #6,SP ; collapse the stack 46
 47
 jmp $ 48
 49
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 50
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 51
 52
;--- 53
; Stack Pointer definition 54
;--- 55
 .global __STACK_END 56
 .sect .stack 57
 58
;--- 59
; Interrupt Vectors 60
;--- 61
 .sect ".reset" ; MSP430 RESET Vector 62
 .short RESET 63
 .end 64

Figure 4. Example of Passing Parameters to Subroutine Through the Stack
(Lab5_D3_main.asm)

CPE 325: Lab Tutorial #5 © A. Milenković 9

;--- 1
; File : Lab5_D3_SP.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_sp is a subroutine that sums elements of an integer array 4
; Input : The input parameters are on the stack pushed as follows: 5
; starting address of the array 6
; array length 7
; display id 8
; Output : No output 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;-- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
 .def suma_sp 15
 16
 .text 17
suma_sp: 18
 ; save the registers on the stack 19
 push R7 ; save R7, temporal sum 20
 push R6 ; save R6, array length 21
 push R4 ; save R5, pointer to array 22
 clr.w R7 ; clear R7 23
 mov.w 10(SP), R6 ; retrieve array length 24
 mov.w 12(SP), R4 ; retrieve starting address 25
lnext: add.w @R4+, R7 ; add next element 26
 dec.w R6 ; decrement array length 27
 jnz lnext ; repeat if not done 28
 mov.w 8(SP), R4 ; get id from the stack 29
 bit.w #1, R4 ; test display id 30
 jnz lp34 ; jump to lp34 display id = 1 31
 mov.b R7, P1OUT ; lower 8 bits of the sum to P1OUT 32
 swpb R7 ; swap bytes 33
 mov.b R7, P2OUT ; upper 8 bits of the sum to P2OUT 34
 jmp lend ; jump to lend 35
lp34: mov.b R7, P3OUT ; lower 8 bits of ths sum to P3OUT 36
 swpb R7 ; swap bytes 37
 mov.b R7, P4OUT ; upper 8 bits of the sum to P4OUT 38
lend: pop R4 ; restore R4 39
 pop R6 ; restore R6 40
 pop R7 ; restore R7 41
 ret ; return 42
 .end 43

Figure 5. Array Addition Subroutine that Uses Parameters from the Stack (Lab5_D3_SP.asm)

2 Hardware Multiplier

The MSP430 contains an optional peripheral hardware multiplier that allows the user to quickly
perform multiplication operations. Multiplication operations using the standard instruction set

CPE 325: Lab#5 Tutorial © A. Milenković 10

can be complex and consume a lot of processing time; however, the hardware multiplier is a
specialized peripheral that the user can operate with only a few instructions. The multiplier can
perform up to 16-bit by 16-bit multiplication and can perform signed or unsigned multiplication
with or without an accumulator. Some MSP430 models have no multiplier, but some models
have a 32-bit by 32-bit multiplier. It is important to check the datasheet for your particular
device to understand the available peripherals.

To use the hardware multiplier, you simply move your first operand (multiplicand) into a
register designed to accept the first operand. There are four registers which can accept the first
operand, and the one you choose determines the type of multiplication that will be performed.
The second operand is then moved to the OP2 register. The result of the multiplication is
calculated and placed in two registers – RESLO and RESHI. An additional result register,
SUMEXT, is used in certain multiplication operations. The MSP430 user’s guide includes a list of
examples for performing the different types of multiplication, and they are listed here for
convenience.

; 16x16 Unsigned Multiply

MOV #01234h,&MPY ; Load first operand

MOV #05678h,&OP2 ; Load second operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.

MOV #012h,&0130h ; Load first operand

MOV #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply

MOV #01234h,&MPYS ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.

MOV.B #012h,&0132h ; Load first operand

SXT &MPYS ; Sign extend first operand

MOV. B #034h,&0138h ; Load 2nd operand

SXT &OP2 ; Sign extend 2nd operand

; (triggers 2nd multiplication)

; ... ; Process results

; 16x16 Unsigned Multiply Accumulate

MOV #01234h,&MAC ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply Accumulate. Absolute addressing

MOV.B #012h,&0134h ; Load first operand

MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply Accumulate

MOV #01234h,&MACS ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

CPE 325: Lab#5 Tutorial © A. Milenković 11

; ... ; Process results

; 8x8 Signed Multiply Accumulate. Absolute addressing

MOV.B #012h,&0136h ; Load first operand

SXT &MACS ; Sign extend first operand

MOV.B #034h,R5 ; Temp. location for 2nd operand

SXT R5 ; Sign extend 2nd operand

MOV R5,&OP2 ; Load 2nd operand

; ... ; Process results

3 References

You should read the following references to gain more familiarity with subroutines, passing
parameters, and the hardware multiplier:

● MSP430 Assembly Language Programming

● Page 177-185 in Davies’ MSP430 Microcontroller Basics (subroutines and passing
parameters)

● Chapter 8, pages 345-352, in the MSP430FG4618 user’s guide (16-bit hardware
multiplier)

http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw03_cpe323_MSP430_Assembly_Text.pdf

