

CPE 325: Lab#6 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #6 Tutorial

MSP430 Interrupts and Clock Subsystem

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective

This tutorial will introduce the clock module of the MSP430FG4618 device (FLL+), the oscillator
sources, and interrupts in C and assembly language. You will learn the following topics:

Using interrupts in C/assembly
The clock subsystem and clock configuration
Working with the TI experimenter’s board

Notes

All previous tutorials are required for successful completion of this lab, especially, the tutorials
introducing the TI Experimenter’s Board and the Code Composer Studio software development
environment. Required reading: MSP430 Interrupts.

Contents

1 Interfacing Switches and LEDs in Assembly (Polling and Interrupts) 2

1.1 Toggling LEDs in Assembly Language ... 2

1.2 Interfacing Switches in Assembly Language (Polling) .. 3

1.3 Interfacing Switches in Assembly Language (Interrupt Service Routine) 5

2 Interfacing Switches and LEDs Using Interrupts in C ... 8

3 Clock Module ... 10

3.1 FLL+ ... 10

3.2 Programming FLL+ Clocks: Examples ... 16

4 References ... 18

mailto:milenka@uah.edu
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw06_cpe323_MSP430_Interrupts_Text.pdf

CPE 325: Lab#6 Tutorial © A. Milenković 2

1 Interfacing Switches and LEDs in Assembly (Polling and Interrupts)

In the handout for Laboratory #3 we learned how to interface with the MSP430 Experimenter
Board hardware, specifically LEDs and switches, using C language. We will redo the same
examples using assembly language.

1.1 Toggling LEDs in Assembly Language

Figure 1 shows the assembly code of the blink application (Lab6_D1.asm). Here is a brief
description of the assembly code for this application. In addition to the portions of the code that
were discussed in the previous labs we can discuss some new additions. The .text is a segment
control assembler directive that controls how code and data are located in memory. .text is used
to mark the beginning of a relocatable code. The linker can recognize any other type of segment
(e.g., __STACK_END for code stack). Our main loop that flashes the LEDs starts at the InfLoop
label. The code starting at the label SWDelay1 implements the software delay to make sure the
LEDs blink at the appropriate interval. To exactly calculate the software delay we need to know
the instruction execution time and the clock cycle time. The register R15 is loaded with 65,535
(the maximum unsigned integer that can fit in a 16-bit register). The dec.w instruction takes 1
clock cycle to execute, and jnz L1 takes 2 clock cycles to execute (note: this can be determined
by enabling and reading the value of the clock in CCS). The nop instruction takes 1 clock cycle.
The number of nop instructions in the loop is determined so that the total number of clocks in
the SWDelay1 loop is 16. Determining clock cycle time requires in-depth understanding of the
FLL-Clock module of the MSP430 which is discussed later in this tutorial. We note that the
processor clock frequency is 1,048,576 Hz (220 Hz) for the default configuration. The total delay
is thus 65,535*16/220 ~ 1s. Note: nop instructions are often used in creating software delays
because they do not affect the state of the registers and take exactly one clock cycle to execute.

;--- 1
; File: Lab6_D1.asm 2
; Description: The program toggles LEDs periodically. 3
; The LEDs are initialized off. An endless loop is entered. 4
; A SWDelay1 loop creates 1s delay before toggling the LEDs. 5
; LEDs will toggle: off for 1s and on for 1s. 6
; 7
; Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO = 2^20=1,048,576 Hz 8
; Platform: TI Experimenter's Board 9
; 10
; MSP430xG461x 11
; ----------------- 12
; /|\| | 13
; | | | 14
; --|RST | 15
; | P2.2|-->LED1(GREEN) 16
; | P2.1|-->LED2(YELLOW) 17
; 18
; Author: Aleksandar Milenkovic, milenkovic@computer.org 19
; Date: September 14, 2018 20
;--- 21
 .cdecls C,LIST,"msp430.h" ; Include device header file 22

CPE 325: Lab#6 Tutorial © A. Milenković 3

 23
;--- 24
 .def RESET ; Export program entry-point to 25
 ; make it known to linker. 26
;--- 27
 .text ; Assemble into program memory. 28
 .retain ; Override ELF conditional linking 29
 ; and retain current section. 30
 .retainrefs ; And retain any sections that have 31
 ; references to current section. 32
 33
;--- 34
RESET: mov.w #__STACK_END, SP ; Initialize stack pointer 35
StopWDT: mov.w #WDTPW|WDTHOLD, &WDTCTL ; Stop watchdog timer 36
Setup: bis.b #0x06, &P2DIR ; Set P2.2 and P2.1 to output 37
 ; direction (0000_0110) 38
 bic.b #0x0, &P2OUT ; Set P2OUT to 0x0000_0100 (LEDS off) 39
InfLoop: mov.w #0xFFFF, R5 ; Software delay (65,535*16cc/2^20 ~ 1s) 40
SWDelay1: nop ; 1cc (total delay is 16 cc) 41
 nop 42
 nop 43
 nop 44
 nop 45
 nop 46
 nop 47
 nop 48
 nop 49
 nop 50
 nop 51
 nop 52
 nop 53
 dec.w R5 ; 1cc 54
 jnz SWDelay1 ; 2cc 55
 xor.b #0x06, P2OUT ; Toggle LEDs 56
 jmp InfLoop ; Goto InfLoop 57
 58
;--- 59
; Stack Pointer definition 60
;--- 61
 .global __STACK_END 62
 .sect .stack 63
 64
;--- 65
; Interrupt Vectors 66
;--- 67
 .sect ".reset" ; MSP430 RESET Vector 68
 .short RESET 69
 .end 70

Figure 1. Toggling the LEDs in Assembly Language

1.2 Interfacing Switches in Assembly Language (Polling)

Figure 2 shows assembly program that interfaces SW1 and LED1. SW1 is connected to P1.BIT0
(ports are configured by default as input) and LED1 is connected to P2.BIT2 (should be configured

CPE 323: Interrupts © A. Milenković 4

as a digital output). BIT0 of P1 is checked. If pressed a logic 0 should be detected in P1IN.BIT0;
otherwise it should read as a logic 1. When a press is detected, a software delay of 20 ms is
implemented to support de-bouncing of the switch. If the switch is still pressed, the program
turns on LED1. The program continually checks whether the switch is still pressed. If a release
(depress) is detected, LED1 is turned off.

;--- 1
; File: Lab6_D2.asm 2
; Description: The program demonstrates Press/Release using SW1 and LED1. 3
; LED1 is initialized off. 4
; When SW1 press is detected, a software delay of 20 ms 5
; is used to implement debouncing. The switch is checked 6
; again, and if on, LED1 is turned on until SW1 is released. 7
; 8
; Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO = 2^20=1,048,576 Hz 9
; Platform: TI Experimenter's Board 10
; 11
; MSP430xG461x 12
; ----------------- 13
; /|\| | 14
; | | | 15
; --|RST | 16
; | P2.2|-->LED1(GREEN) 17
; | P1.0|<--SW1 18
; 19
; Author: Aleksandar Milenkovic, milenkovic@computer.org 20
; Date: September 14, 2018 21
;--- 22
 23
 .cdecls C,LIST,"msp430.h" ; Include device header file 24
 25
;--- 26
 .def RESET ; Export program entry-point to 27
 ; make it known to linker. 28
;--- 29
 .text ; Assemble into program memory. 30
 .retain ; Override ELF conditional linking 31
 ; and retain current section. 32
 .retainrefs ; And retain any sections that have 33
 ; references to current section. 34
 35
;--- 36
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 37
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 38
;--- 39
SetupP2: 40
 bis.b #BIT2, &P2DIR ; Set P2.2 to output 41
 ; direction (0000_0100) 42
 bic.b #BIT2, &P2OUT ; Set P2OUT to 0x0000_0100 (ensure 43
 ; LED1 is off) 44
ChkSW1: bit.b #BIT0, &P1IN ; Check if SW1 is pressed 45
 ; (0000_0001 on P1IN) 46
 jnz ChkSW1 ; If not zero, SW is not pressed 47

CPE 323: Interrupts © A. Milenković 5

 ; loop and check again 48
Debounce: 49
 mov.w #2000, R15 ; Set to (2000 * 10 cc = 20,000 cc) 50
SWD20ms: dec.w R15 ; Decrement R15 51
 nop 52
 nop 53
 nop 54
 nop 55
 nop 56
 nop 57
 nop 58
 jnz SWD20ms ; Delay over? 59
 bit.b #BIT0, &P1IN ; Verify SW1 is still pressed 60
 jnz ChkSW1 ; If not, wait for SW1 press 61
 62
LEDon: bis.b #BIT2, &P2OUT ; Turn on LED1 63
SW1wait: bit.b #BIT0, &P1IN ; Test SW1 64
 jz SW1wait ; Wait until SW1 is released 65
 bic.b #BIT2, &P2OUT ; Turn off LED1 66
 jmp ChkSW1 ; Loop to beginning 67
 68
;--- 69
; Stack Pointer definition 70
;--- 71
 .global __STACK_END 72
 .sect .stack 73
 74
;--- 75
; Interrupt Vectors 76
;--- 77
 .sect ".reset" ; MSP430 RESET Vector 78
 .short RESET 79
 .end 80

Figure 2. Turn on LED1 when SW1 is Pressed (Lab6_D2.asm)

1.3 Interfacing Switches in Assembly Language (Interrupt Service Routine)

With microcontrollers, it is often useful to be able to use interrupts in our programs. An interrupt
allows an automatic break from the current instruction based on a set of conditions. Some of the
I/O ports on the MSP430 have an interrupt capability that you can configure. When the interrupt
conditions are met, the program execution departs into a service routine that handles the
interrupt event. Once the service routine is completed, the last instruction RETI (return from
interrupt) transfers the control back to the main program where it left off. We will learn more
about interrupts in a subsequent lab, but you should understand how interrupt vectors are used
and what interrupts do. To set up an interrupt for an input digital port, we have to perform a few
tasks:

 Enable global interrupts in the status register

 Enable interrupts to occur for the particular bits on the desired port

 Specify whether the interrupt is called on a falling edge or rising edge

 Initialize the interrupt flag by clearing it

CPE 325: Lab Tutorial #6 © A. Milenković 6

An example of using interrupts to interface the switches of the MSP430 experimenter board is
shown in Figure 3. The main program configures ports, enables the global interrupts (GIE bit is SR
is set), enables interrupt from BIT0 of Port1 (P1IE=0x0000_0001b). As pressing a switch
corresponds to having input signal transitions from a logic ‘1’ to a logic ‘0’, the interrupt arises
when a falling edge is detected at P1IN.BIT0. The interrupt service routine starts at label SW1_ISR.
The state of the input is checked; if P1IN.BIT0 is not a logic 0, we exit the ISR; otherwise, de-
bouncing is performed. If SW1 is still pressed after 20 ms, LED1 is turned on. The program then
waits for SW1 to be released. Note lines 88 and 89 that initialize the IVT entry 20 reserved for
Port 1.

;--- 1
; File: Lab6_D3.asm 2
; Description: The program demonstrates Press/Release using SW1 and LED1. 3
; LED1 is initialized off. The main program enables interrupts 4
; from P1.BIT0 (SW1) and remains in an infinite loop doing nothing. 5
; P1_ISR implements debouncing and waits for a SW1 to be released. 6
; 7
; Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO = 2^20=1,048,576 Hz 8
; Platform: TI Experimenter's Board 9
; 10
; MSP430xG461x 11
; ----------------- 12
; /|\| | 13
; | | | 14
; --|RST | 15
; | P2.2|-->LED1(GREEN) 16
; | P1.0|<--SW1 17
; 18
; Author: Aleksandar Milenkovic, milenkovic@computer.org 19
; Date: September 14, 2018 20
;--- 21
 .cdecls C,LIST,"msp430.h" ; Include device header file 22
 23
;--- 24
 .def RESET ; Export program entry-point to 25
 ; make it known to linker. 26
 .def SW1_ISR 27
;--- 28
 .text ; Assemble into program memory. 29
 .retain ; Override ELF conditional linking 30
 ; and retain current section. 31
 .retainrefs ; And retain any sections that have 32
 ; references to current section. 33
 34
;--- 35
RESET: mov.w #__STACK_END, SP ; Initialize stack pointer 36
StopWDT: mov.w #WDTPW|WDTHOLD, &WDTCTL ; Stop watchdog timer 37
;--- 38
Setup: 39
 bis.b #BIT2, &P2DIR ; Set P2.2 to output 40
 ; direction (0000_0100) 41

CPE 325: Lab Tutorial #6 © A. Milenković 7

 bic.b #BIT2, &P2OUT ; Set P2OUT to 0x0000_0100 42
 ; (ensure LED1 is off) 43
 bis.w #GIE, SR ; Enable Global Interrupts 44
 bis.b #BIT0, &P1IE ; Enable Port 1 interrupt from bit 0 45
 bis.b #BIT0, &P1IES ; Set interrupt to call from hi to low 46
 bic.b #BIT0, &P1IFG ; Clear interrupt flag 47
InfLoop: 48
 jmp $; Loop here until interrupt 49
 50
;-- 51
; P1_0 (SW1) interrupt service routine (ISR) 52
;-- 53
SW1_ISR: 54
 bic.b #BIT0, &P1IFG ; Clear interrupt flag 55
ChkSw1: bit.b #BIT0, &P1IN ; Check if SW1 is pressed 56
 ; (0000_0001 on P1IN) 57
 jnz LExit ; If not zero, SW is not pressed 58
 ; loop and check again 59
Debounce: mov.w #2000, R15 ; Set to (2000 * 10 cc) 60
SWD20ms: dec.w R15 ; Decrement R15 61
 nop 62
 nop 63
 nop 64
 nop 65
 nop 66
 nop 67
 nop 68
 jnz SWD20ms ; Delay over? 69
 bit.b #BIT0, &P1IN ; Verify SW1 is still pressed 70
 jnz LExit ; If not, wait for SW1 press 71
LEDon: bis.b #BIT2, &P2OUT ; Turn on LED1 72
SW1wait: bit.b #BIT0, &P1IN ; Test SW1 73
 jz SW1wait ; Wait until SW1 is released 74
 bic.b #BIT2, &P2OUT ; Turn off LED1 75
LExit: reti ; Return from interrupt 76
;--- 77
; Stack Pointer definition 78
;--- 79
 .global __STACK_END 80
 .sect .stack 81
 82
;--- 83
; Interrupt Vectors 84
;--- 85
 .sect ".reset" ; MSP430 RESET Vector 86
 .short RESET 87
 .sect ".int20" ; P1.x Vector 88
 .short SW1_ISR 89
 .end 90

Figure 3. Press/release Using Port 1 ISR (Lab6_D3.asm)

CPE 325: Lab Tutorial #6 © A. Milenković 8

2 Interfacing Switches and LEDs Using Interrupts in C

Figure 4 shows a C program that turns LED1 on when SW1 is pressed and turns LED1 off when
SW1 is released. The main configures and initializes ports, configures interrupts, and enters an
infinite loop where the program waits for SW1 to be released to turn off LED1. P1_ISR is entered
upon detection of the switch press; the code inside clears P1.IFG0 and turns on LED1. Please not
C convention to indicate that Port1_ISR corresponds to PORT1_VECTOR in the interrupt vector
table.

/** 1
 * File: Lab6_D4.c 2
 * Description: The program detects when SW1 is pressed and turns on LED1. 3
 * LED1 is kept on as long as SW1 is pressed. 4
 * P1_ISR is used to detect when SW1 is pressed. 5
 * Main program polls SW1 and turns off when a release is detected. 6
 * Board: MSP430FG461x/F20xx Experimenter Board 7
 * Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO 8
 * 9
 * MSP430FG461x 10
 * +-----------------+ 11
 * | | 12
 * | | 13
 * | | 14
 * | | 15
 * | P2.2|--> LED1 16
 * | P1.0|<-- SW1 17
 * 18
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 19
 * Date: September 2010 20
**/ 21
#include <msp430.h> 22
#define SW1 BIT0&P1IN // SW1 is P1IN&BIT0 23
 24
void main(void) { 25
 WDTCTL = WDTPW+WDTHOLD; // Stop WDT 26
 P2DIR |= BIT2; // Set LED1 as output 27
 P2OUT = 0x00; // clear LED1 status 28
 _EINT(); // enable interrupts 29
 P1IE |= BIT0; // P1.0 interrupt enabled 30
 P1IES |= BIT0; // P1.0 hi/low edge 31
 P1IFG &= ~BIT0; // P1.0 IFG cleared 32
 for(;;) { 33
 while((SW1) == 0); // Wait until SW1 is released 34
 P2OUT &= ~BIT2; // LED1 is turned off 35
 } 36
} 37
 38
// Port 1 interrupt service routine 39
#pragma vector = PORT1_VECTOR 40
__interrupt void Port1_ISR (void) { 41
 P2OUT |= BIT2; // LED1 is turned ON 42
 P1IFG &= ~BIT0; // P1.0 IFG cleared 43
} 44

CPE 325: Lab Tutorial #6 © A. Milenković 9

 45

Figure 4. Press/release Using Port 1 ISR (Lab6_D4.c)

Looking at the program in Figure 4 we can see that release is detected in the main program. A
better implementation would delegate both press and release activities into the P1 ISR as shown
in Figure 5. To implement this, we need to establish a global variable called SW1pressed that
keeps the current state of the switch (0 – released, 1 – pressed). At the beginning we expect a
press event, so Port 1 is configured to wait for a falling edge on P1IN.BIT0 (SW1 is pressed). In
that case, the ISR turns on LED1, sets the SW1pressed and configures P1IES to trigger an interrupt
when a rising edge is detected on P1IN.BIT0. When the switch is pressed and we the ISR is
entered, the steps are taken to turn LED1 off and configure P1IES so that a new press event can
be detected. This way, all work is done inside the P1 ISR and main program can put the processor
into sleep state.

/** 1
 * File: Lab6_D5.c 2
 * Description: The program detects when SW1 is pressed and turns on LED1. 3
 * LED1 is kept on as long as SW1 is pressed. 4
 * P1_ISR is used to detect both SW1 presses and releases. 5
 * Board: MSP430FG461x/F20xx Experimenter Board 6
 * Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO 7
 * 8
 * MSP430FG461x 9
 * +-----------------+ 10
 * | | 11
 * | | 12
 * | | 13
 * | | 14
 * | P2.2|--> LED1 15
 * | P1.0|<-- SW1 16
 * 17
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 18
 * Date: September 2010 19
**/ 20
#include <msp430.h> 21
 22
unsigned char SW1pressed = 0; // SW1 status (0 not pressed, 1 pressed) 23
 24
void main(void) { 25
 WDTCTL = WDTPW+WDTHOLD; // Stop WDT 26
 P2DIR |= BIT2; // Set LED1 as output 27
 P2OUT = 0x00; // Clear LED1 status 28
 SW1pressed = 0; 29
 _EINT(); // Enable interrupts 30
 P1IE |= BIT0; // P1IE.BIT0 interrupt enabled 31
 P1IES |= BIT0; // P1IES.BIT0 hi/low edge 32
 P1IFG &= ~BIT0; // P1IFG.BIT0 is cleared 33
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0(CPU is off); Enable interrupts 34
} 35
 36
// Port 1 interrupt service routine 37

CPE 325: Lab Tutorial #6 © A. Milenković 10

#pragma vector = PORT1_VECTOR 38
__interrupt void Port1_ISR (void) { 39
 if (SW1pressed == 0) { 40
 SW1pressed = 1; 41
 P2OUT |= BIT2; // LED1 is turned ON 42
 P1IFG &= ~BIT0; // P1IFG.BIT0 is cleared 43
 P1IES &= ~BIT0; // P1IES.BIT0 low/high edge 44
 } else if (SW1pressed == 1) { 45
 SW1pressed = 0; 46
 P2OUT &= ~BIT2; // LED1 is turned ON 47
 P1IFG &= ~BIT0; // P1IFG.BIT0 is cleared 48
 P1IES |= BIT0; // P1IES.BIT0 hi/low edge 49
 } 50
} 51

Figure 5. Press/release Using Port 1 ISR – An Improved Implementation (Lab6_D5.c)

3 Clock Module

In the previous examples we have learned how to write a program that toggles the LEDs
connected to the MSP430’s output ports. We have also learned how write code to generate
software delays. In our example, we assumed that the processor clock is around 1 µs (i.e., the
clock frequency is approximately 1 MHz). The MSP430 family supports several clock modules and
a user has a full control over these modules. By changing the content of relevant clock module
control registers, one can change the processor clock frequency, as well as the frequency of other
clock signals that are used for peripheral devices. In the next section, we will discuss the
organization of the FLL+ clock module used in the MSP430FG4618 device.

3.1 FLL+

The more recent MSP430 devices use an on-chip system clock called the FLL+ (frequency locked
loop). This module can be programmed to provide a range of core clock frequencies, which are
frequency-locked to an external crystal (usually a 32,768 Hz wrist-watch type crystal which has
good stability). A frequency-lock, or frequency-locked loop (FLL), is an electronic control system
that generates a signal that is locked to the frequency of an input or "reference" signal. This
circuit compares the frequency of a controlled oscillator (e.g., from an on-chip digitally-controlled
oscillator) to the reference (e.g., external crystal), automatically raising or lowering the frequency
of the oscillator until its frequency (but not necessarily its phase) is matched to that of the
reference. Figure 6 shows the block diagram of the FLL+ clock module. The module supports two
or three clock sources as follows.

CPE 325: Lab#6 Tutorial © A. Milenković 11

Figure 6. Block diagram of FLL+ module in MSP430FG461x devices

LFXT1CLK: Low-frequency/high-frequency oscillator that can be used either with low-frequency
32768-Hz watch crystals or standard crystals or resonators in the 450-kHz to 8-MHz range. The
LFXT1 oscillator supports ultra-low current consumption using a 32,768-Hz watch crystal in LF
mode (control bit XTS_FLL is cleared, i.e., XTS_FLL = 0). A watch crystal connects to XIN and XOUT
without any external components. The LFXT1 oscillator also supports high-speed crystals or
resonators when in HF mode (XTS_FLL = 1). The high-speed crystal or resonator connects to XIN
and XOUT.

XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators,
or external clock sources in the 450-kHz to 8-MHz range. XT2 sources XT2CLK and its

CPE 325: Lab#6 Tutorial © A. Milenković 12

characteristics are identical to LFXT1 in HF mode, except XT2 does not have internal load
capacitors. The required load capacitance for the high-frequency crystal or resonator must be
provided externally. The XT2OFF bit disables the XT2 oscillator if XT2CLK is unused for MCLK
(SELMx ≠ 2 or CPUOFF = 1) and SMCLK (SELS = 0 or SMCLKOFF = 1).

DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type characteristics, stabilized by
the FLL. The DCO is an integrated ring oscillator with RC-type characteristics. The DCO frequency
is stabilized by the FLL to a multiple of ACLK as defined by N, the lowest 7 bits of the SCFQCTL
register. The DCOPLUS bit sets the fDCOCLK frequency to fDCO or fDCO/D. The FLLDx bits configure the
divider, D, to 1, 2, 4, or 8. By default, DCOPLUS = 0 and D = 2, providing a clock frequency of fDCO/2
on fDCOCLK. The multiplier (N+1) and D set the frequency of DCOCLK.
DCOPLUS = 0: fDCOCLK = (N + 1) x fACLK
DCOPLUS = 1: fDCOCLK = D x (N + 1) x fACLK
Four clock signals are available from the FLL+ module, as follows.

 ACLK: Auxiliary clock. The ACLK is software selectable as LFXT1CLK or VLOCLK as clock
source. ACLK is software selectable for individual peripheral modules.

 ACLK/n: Buffered output of the ACLK. The ACLK/n is ACLK divided by 1,2,4, or 8 and used
externally only.

 MCLK: Master clock. MCLK is software selectable as LFXT1CLK, VLOCLK, XT2CLK (if
available), or DCOCLK. MCLK can be divided by 1, 2, 4, or 8 within the FLL block. MCLK is
used by the CPU and system.

 SMCLK: Sub-main clock. SMCLK is software selectable as XT2CLK (if available) or DCOCLK.
SMCLK is software selectable for individual peripheral modules.

The FLL+ clock module registers are described below. The SCFQCTL, SCFI0/1 and FLL_CTL0/1
registers govern the FLL+ clock module operation and they can be reconfigured by software at
any time during program execution.

Register Short Form Register
Type

Address Initial State

System clock control SCFQCTL Read/write 052h 01Fh with PUC

System clock frequency
integrator 0

SCFI0 Read/write 050h 040h with PUC

System clock frequency
integrator 1

SCIF1 Read/write 051h Reset with PUC

FLL+ control register 0 FLL_CTL0 Read/write 053h 003h with PUC

FLL+ control register 1 FLL_CTL1 Read/write 054h Reset with PUC

The format of the SCFQCTL register is given in Figure 7. Its initial value is 1Fh, which means that
modulation is enabled (SCFQ_M=0, and N=001_1111 = 31).

CPE 325: Lab#6 Tutorial © A. Milenković 13

Figure 7. Format of the SCFQCTL register

The format of the SCFI0 and SCFI1 registers is given in Figure 8 and Figure 9, respectively. The
SCFI0 initial value is 0x40, which means FLLDx=00, FN_x=1000, MODx(LSB)=00. The SCFI1 initial
value is 0x00, meaning that DCOx=00000, and MODx(MSB)=000. Similarly, Figure 10 and Figure
11 show the formats of the registers FLL_CTL0 and FLL_CTL1. Based on the registers’ initial values
we can determine the clock conditions after the PUC signal. Analyze the schematic of the TI
experimenter’s board. Locate the input pins XIN and XOUT. What is connected to these pins?
Analyze the block diagram in Figure 4 and determine configuration of each resource. List the
different sources of inputs for ACLK, SMCLK, and MCLK clocks. How can we choose them? What
is the default clock frequency on ACLK, DCOCLK, MCLK, and SMCLK? From Figure 6, analyze what
is the maximum possible value of N and DCOCLK clock frequency? Show your work.

CPE 325: Lab#6 Tutorial © A. Milenković 14

Figure 8. Format of the SCFI0 Register

Figure 9. Format of the SCFI1 Register

CPE 325: Lab#6 Tutorial © A. Milenković 15

Figure 10. Format of the FLL_CTL0 register. The initial value is 0x03=> DCOPLUS=0, XT1OFF=0,
LFOF=1, and DCOF=1.

CPE 325: Lab#6 Tutorial © A. Milenković 16

Figure 11. Format of the FLL_CTL1 register.

3.2 Programming FLL+ Clocks: Examples

The following examples illustrate (Figure 12 and Figure 13) how you can change the processor
clock frequency by modifying individual bits in the control registers. Please note that these
examples only change the clocks and make them visible on external ports (some digital I/O ports
have a special function to pass the clocks to the output, so we can observe them from the outside
by connecting to oscilloscope). For learning how internal digitally-controlled oscillator works read
the corresponding user manual.

CPE 325: Lab#6 Tutorial © A. Milenković 17

/** 1
 * File: Lab6_D6.c 2
 * Description: MSP430xG46x Demo - FLL+, Runs Internal DCO at 2.45MHz 3
 * This program demonstrates setting the internal DCO to run at 4
 * 2.45MHz with auto-calibration by the FLL+ circuitry. 5
 * ACLK = LFXT1 = 32768Hz, 6
 * MCLK = SMCLK = DCO = (74+1) x ACLK = 2457600Hz 7
 * An external watch crystal between XIN & XOUT is required for ACLK 8
 * 9
 * MSP430xG461x 10
 * ----------------- 11
 * /|\| XIN|- 12
 * | | | 32kHz 13
 * --|RST XOUT|- 14
 * | | 15
 * | P1.1|--> MCLK = 2.45MHz 16
 * | | 17
 * | P1.4|--> SMCLK = 2.45MHz 18
 * | P1.5|--> ACLK = 32kHz 19
 * | | 20
 * 21
 * Author: Aleksandar Milenkovic, milenkovic@computer.og 22
 * Date: September 2010 23
 **/ 24
#include <msp430.h> 25
 26
void main(void) 27
{ 28
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 29
 FLL_CTL0 |= XCAP18PF; // Set load capacitance for xtal 30
 SCFI0 |= FN_2; // DCO range control 31
 SCFQCTL = 74; // (74+1) x 32768 = 2.45MHz 32
 P1DIR |= 0x32; // P1.1, P1.4 & P1.5 to output direction 33
 P1SEL |= 0x32; // P1.1, P1.4 & P1.5 to output MCLK, SMCLK & ACLK 34
 35
 while(1); // Loop in place 36
} 37
 38

Figure 12. Changing DCO to Run at 2.45 MHz using FLL+ Module (Lab6_D6.c)

/** 1
 * File: Lab6_D7.c 2
 * Description: MSP430xG46x Demo - FLL+, Runs Internal DCO at 8MHz 3
 * This program demonstrates setting the internal DCO to run at 4
 * 8MHz with auto-calibration by the FLL+ circuitry. 5
 * Clocks: ACLK = LFXT1 = 32768Hz, 6
 * MCLK = SMCLK = DCO = (121+1) x 2 x ACLK = 7995392Hz 7
 * An external watch crystal between XIN & XOUT is required for ACLK 8
 * 9
 * MSP430xG461x 10
 * ----------------- 11
 * /|\| XIN|- 12
 * | | | 32kHz 13

CPE 325: Lab#6 Tutorial © A. Milenković 18

 * --|RST XOUT|- 14
 * | | 15
 * | P1.1|--> MCLK = 8MHz 16
 * | | 17
 * | P1.4|--> SMCLK = 8MHz 18
 * | P1.5|--> ACLK = 32kHz 19
 * | | 20
 * 21
 * Author: Aleksandar Milenkovic, milenkovic@computer.og 22
 * Date: September 2010 23
 **/ 24
 25
#include <msp430.h> 26
 27
void main(void) 28
{ 29
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 30
 FLL_CTL0 |= DCOPLUS + XCAP18PF; // DCO+ set, freq = xtal x D x N+1 31
 SCFI0 |= FN_4 + FLLD_2; // DCO range control 32
 SCFQCTL = 121; // (121+1) x 32768 x 2 = 7.99 MHz 33
 P1DIR |= 0x32; // P1.1, P1.4 & P1.5 to output direction 34
 P1SEL |= 0x32; // P1.1, P1.4 & P1.5 to output MCLK, SMCLK & ACLK 35
 while(1); // Loop in place 36
}37

Figure 13. Changing DCO to Run at 8 MHz using FLL+ Module (Lab6_D7.c)

4 References

It is crucial that you become familiar with the basics of how digital ports work – how to set their
output direction, read from or write to the ports, set interrupts, and set up their special functions.
We will be using these features to control hardware and communication between devices
throughout this class. Please reference the following material to gain more insight on the device:

 The MSP430 Experimenter’s Board hardware schematic

 Chapter 11 in the MSP430FG4618 user’s guide (pages 407-414)

 Chapter 7 in the John H. Davies’ MSP430 Microcontroller Basics

