

CPE 325: Lab#8 Tutorial © A. Milenković 1

CPE 325: Embedded Systems Laboratory
Laboratory #8 Tutorial

UART Serial Communications

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective

This tutorial will introduce communication protocols used with MSP430 and other devices.
Specifically, it will cover asynchronous serial communication using USCI peripheral. You will
learn the following topics:

Configuration of the USCI peripheral device for UART mode
Utilization of the USCI in UART mode for serial communication with a workstation
Understanding of workstation clients interfacing serial communication ports (putty) and

UAH serial communication application

Notes

All previous tutorials are required for successful completion of this lab. Read CPE323 lecture
discussing UART Communication.

Contents

1 Serial Communication ... 2

2 Real-Time Clock ... 5

3 Putty versus Serial App .. 8

4 References ... 12

mailto:milenka@uah.edu
http://lacasa.uah.edu/portal/Upload/teaching/cpe323/lectures/lw09_cpe323_MSP430_UARTSerialComm_Text.pdf

CPE 325: Lab#8 Tutorial © A. Milenković 2

1 Serial Communication

An MSP430-based platform can communicate with another system, such as a personal
computer, using either the synchronous or asynchronous communication mode. For two
devices to communicate synchronously, they must share a common clock source. In this lab, we
are going to interface a MSP430 with a personal computer using an asynchronous
communication mode. Since the two devices do not share a clock signal, there should be an
agreement between the devices on the speed of the communication before the actual interface
starts.

To configure the MSP430 in UART mode, the internal divider and the modulation register
should be initialized appropriately. The internal divider is calculated by dividing the clock by the
baud rate. But, the division of the clock by the baud rate is usually not a whole number.
Therefore, to take account of the fraction part of the division, we use the modulation register.
The value in the modulation register is calculated in such a way that the time it takes to
receive/transmit each bit is as close as possible to the exact time given by the baud rate. If the
appropriate modulation value is not used, the fraction part of the division of clock frequency by
the baud rate will accumulate and eventually make the two devices unable to communicate. An
MSP430-based platform can be connected to a PC machine using the HyperTerminal application
in Windows.

Let us consider a program that sends a character from the PC to the MSP430FG4618
microcontroller and echoes the character back to the PC (Figure 1). Since we cannot connect
the two systems to the same clock source, we should use the UART mode. The USCI peripheral
can be utilized for that purpose. The communication speed is 115,200 bits/s (one-bit period is
thus 1/115,200 or ~8.68 us). The USCI clock, UCLK, is connected to SMCLK running at 1,048,576
Hz. To achieve the baud rate of 115,200 bits per second, the internal divider registers are
initialized to UCA0BR0=0x09, and UCABR1=0x00, because 1,048,576/115,200 = 9.1 ~ 9.
Additionally, the modulation register, UCA0MCTL, is set to 0x01. See the reference manual for
more details about how the value in UCA0MCTL is determined.

Figure 1 shows an implementation using polling. The lines 38-44 are configuring USCI in UART
mode: 8-bit characters, no parity, 1 stop bit, and the baud rate is set as described above. Please
note that we follow recommended sequence of steps for USCI initialization – the SWRST bit in
the control register remains set during initialization and it is cleared once he initialization is
over. The main program loop is an infinite loop where we use polling to detect whether a new
character is received. The program is waiting in line 46 for new character to be received. When
a character is received in the UCA0RXBUF register, the UCA0RXIFG bit is set. Before the
character is echoed back through the serial interface, we first check whether the USCI’s
transmit data buffer is empty (line 48). When the transmit buffer is empty, we proceed with
copying the received character that is in UCA0RXBUF into UCA0TXBUF. The LED4 is toggled
before we go back to the main loop.

CPE 325: Lab#8 Tutorial © A. Milenković 3

/*-- 1
 * File: Lab8_D1.c 2
 * Function: Echo a received character, using polling. 3
 * Description: This program echos the character received from UART back to UART. 4
 * Toggle LED4 with every received character. 5
 * Baud rate: low-frequency (UCOS16=0); 6
 * 1048576/115200 = ~9.1 (0x0009|0x01) 7
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 8
 * 9
 * Instructions: Set the following parameters in putty 10
 * Port : COM1 11
 * Baud rate : 115200 12
 * Data bits: 8 13
 * Parity: None 14
 * Stop bits: 1 15
 * Flow Control: None 16
 * 17
 * MSP430xG461x 18
 * ----------------- 19
 * /|\ | XIN|- 20
 * | | | 32kHz 21
 * |--|RST XOUT|- 22
 * | | 23
 * | P2.4/UCA0TXD|------------> 24
 * | | 115200 - 8N1 25
 * | P2.5/UCA0RXD|<------------ 26
 * | P5.1|----> LED4 27
 * 28
 * Input: None (Type characters in putty/MobaXterm/HyperTerminal) 29
 * Output: Character echoed at UART 30
 * Author: A. Milenkovic, milenkovic@computer.org 31
 * Date: October 2018 32
 --/ 33
#include <msp430xG46x.h> 34
void main(void) { 35
 WDTCTL = WDTPW+WDTHOLD; // Stop WDT 36
 P5DIR |= BIT1; // Set P5.1 to be output 37
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 38
 P2SEL |= BIT4 + BIT5; // P2.4,5 = USCI_A0 RXD/TXD 39
 UCA0CTL1 |= UCSSEL_2; // BRCLK=SMCLK 40
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 41
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 42
 UCA0MCTL = 0x02; // Modulation (UCBRS0=0x01)(UCOS16=0) 43
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 44
 while (1) { 45
 while(!(IFG2&UCA0RXIFG)); // Wait for a new character 46
 // new character is here in UCA0RXBUF 47
 while(!(IFG2&UCA0TXIFG)); // Wait until TXBUF is free 48
 UCA0TXBUF = UCA0RXBUF; // TXBUF <= RXBUF (echo) 49
 P5OUT ^= BIT1; // Toggle LED4 50
 } 51

Figure 1. Echoing a Character Using the USCI in UART Mode and Polling

CPE 325: Lab#8 Tutorial © A. Milenković 4

Figure 2 shows the program that performs the same task, but this time an interrupt service
routine tied to the USCI receiver is used. In the main program the USCI is configured to
generate an interrupt request when a new character is received. Whenever a character is
received and loaded into UCA0RXBUF, the interrupt flag UCA0RXIFG is set and interrupt request
is raised. The main program does nothing beyond initialization – the processor is in a low-power
mode 0 (LPM0). What clock signals are down in this mode?

All actions in this implementation occurs inside the service routine. The processor wakes up
when a new character is received and we find ourselves inside the service routine. In the ISR
before writing the new character to UCA0TXBUF to transmit to back to the workstation, we
need to make sure that it is indeed empty to avoid loss of data. The UCA0TXIFG interrupt flag is
set by the transmitter when the UCA0TXBUF is ready to accept a new character. Note: here we
do polling on transmit buffer inside the receiver ISR. When the UCA0TXBUF is ready
(UCA0TXIFG flag is set), the content from UCA0RXBUF is copied into the UCA0TXBUF. The LED4
is toggled. When exiting the ISR, the original PC and SR are retrieved bringing the processor
back in the LPM0.

/*-- 1
 * File: Lab8_D2.c 2
 * Function: Echo a received character, using receiver ISR. 3
 * Description: This program echos the character received from UART back to UART. 4
 * Toggle LED4 with every received character. 5
 * Baud rate: low-frequency (UCOS16=0); 6
 * 1048576/115200 = ~9.1 (0x0009|0x01) 7
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 8
 * 9
 * Instructions: Set the following parameters in putty 10
 * Port : COM1 11
 * Baud rate : 115200 12
 * Data bits: 8 13
 * Parity: None 14
 * Stop bits: 1 15
 * Flow Control: None 16
 * 17
 * MSP430xG461x 18
 * ----------------- 19
 * /|\ | XIN|- 20
 * | | | 32kHz 21
 * |--|RST XOUT|- 22
 * | | 23
 * | P2.4/UCA0TXD|------------> 24
 * | | 115200 - 8N1 25
 * | P2.5/UCA0RXD|<------------ 26
 * | P5.1|----> LED4 27
 * 28
 * Input: None (Type characters in putty/MobaXterm/HyperTerminal) 29
 * Output: Character echoed at UART 30
 * Author: A. Milenkovic, milenkovic@computer.org 31
 * Date: October 2018 32
 --/ 33
#include <msp430xG46x.h> 34

CPE 325: Lab#8 Tutorial © A. Milenković 5

void main(void) { 35
 WDTCTL = WDTPW+WDTHOLD; // Stop WDT 36
 P5DIR |= BIT1; // Set P5.1 to be output 37
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 38
 P2SEL |= BIT4 + BIT5; // P2.4,5 = USCI_A0 RXD/TXD 39
 UCA0CTL1 |= UCSSEL_2; // BRCLK=SMCLK 40
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 41
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 42
 UCA0MCTL |= BIT2; // Modulation (UCBRS0=0x01)(UCOS16=0) 43
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 44
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt 45
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 46
} 47
 48
// Echo back RXed character, confirm TX buffer is ready first 49
#pragma vector=USCIAB0RX_VECTOR 50
__interrupt void USCIA0RX_ISR (void) { 51
 while(!(IFG2&UCA0TXIFG)); // Wait until can transmit 52
 UCA0TXBUF = UCA0RXBUF; // TXBUF <= RXBUF 53
 P5OUT^=BIT1; // Toggle LED4 54
} 55

Figure 2. Echoing a Character Using the USCI Device

2 Real-Time Clock

In this section we will describe a program that implements a real-time clock on the MSP430
platform (Figure 3). The time is measured from the beginning of the application with a
resolution of 100 milliseconds (one tenth of a second). The time is maintained in two variables,
unsigned int sec (for seconds) and unsigned char tsec for tenths of a second. What is the
maximum time you can have in this case? To observe the clock we can display it either on the
LCD or send it serially to a workstation using a serial communication interface. In our example
we send time through a serial asynchronous link using the MSP430’s USCI (Universal Serial
Communication Interface) device. This device is connected to a RS232 interface (see TI
Experimenter's Board schematic) that connects through a serial cable to a PC. On the PC side
we can open putty application and observe real-time clock that is sent from our development
platform.

The first step is to initialize the USCI device in UART mode for communication using a baud rate
19200 bits/sec. The next step is to initialize Timer_A to measure time and update the real-time
clock variables. The Timer_A ISR is used to maintain the clock and wake up the processor. In the
main program, the local variables are taken and converted into a readable string that is then
sent to the USCI device.

/*-- 1
 * File: Lab8_D3.c 2
 * Function: Displays real-time clock in serial communication client. 3
 * Description: This program maintains real-time clock and sends time 4
 * (10 times a second) to the workstation through 5
 * a serial asynchronous link (UART). 6

CPE 325: Lab#8 Tutorial © A. Milenković 6

 * The time is displayed as follows: "sssss:tsec". 7
 * 8
 * Baud rate divider with 1048576hz = 1048576/19200 = ~54 9
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO = 1048576Hz 10
 * Instructions: Set the following parameters in putty/HyperTerminal 11
 * Port: COM1 12
 * Baud rate: 19200 13
 * Data bits: 8 14
 * Parity: None 15
 * Stop bits: 1 16
 * Flow Control: None 17
 * 18
 * MSP430xG461x 19
 * ----------------- 20
 * /|\ | XIN|- 21
 * | | | 32kHz 22
 * |--|RST XOUT|- 23
 * | | 24
 * | P2.4/UCA0TXD|------------> 25
 * | | 19200 - 8N1 26
 * | P2.5/UCA0RXD|<------------ 27
 * | P5.1|----> LED4 28
 * 29
 * Author: A. Milenkovic, milenkovic@computer.org 30
 * Date: October 2018 31
--*/ 32
#include <msp430xG46x.h> 33
#include <stdio.h> 34
 35
// Current time variables 36
unsigned int sec = 0; // Seconds 37
unsigned int tsec = 0; // 1/10 second 38
char Time[8]; // String to keep current time 39
 40
//Function Declarations 41
void SetTime(void); 42
void SendTime(void); 43
 44
void UART_Initialize(void) { 45
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 46
 P2SEL |= BIT4 + BIT5; // Set UC0TXD and UC0RXD to transmit and receive 47
 UCA0CTL0 = 0; // USCI_A0 control register 48
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK 49
 UCA0BR0 = 54; // 1048576 Hz / 19200 = 54 | 5 50
 UCA0BR1 = 0; 51
 UCA0MCTL = 0x0A; // Modulation 52
 UCA0CTL1 &= ~UCSWRST; // Clear software reset 53
} 54
 55
// Sets the real-time clock variables 56
void SetTime(void) { 57
 tsec++; 58
 if (tsec == 10){ 59
 tsec = 0; 60
 sec++; 61

CPE 325: Lab#8 Tutorial © A. Milenković 7

 P5OUT ^= BIT1; 62
 } 63
} 64
 65
// Sends the time through a serial link 66
void SendTime(void) { 67
 int i; 68
 69
 sprintf(Time, "%05d:%01d", sec, tsec); // Prints time to a string 70
 for (i = 0; i < 8; i++) { // Send character by character 71
 while (!(IFG2 & UCA0TXIFG)); 72
 UCA0TXBUF = Time[i]; 73
 } 74
 while (!(IFG2 & UCA0TXIFG)); 75
 UCA0TXBUF = 0x0D; // Carriage Return 76
} 77
 78
void main(void) { 79
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 80
 UART_Initialize(); // Initialize UART 81
 //Initialize Timer A to measure 1/10 sec 82
 TACTL = TASSEL_2 + MC_1 + ID_3; // Select SMCLK/8 and up mode 83
 TACCR0 = 13107; // 100ms interval 84
 TACCTL0 = CCIE; // Capture/compare interrupt enable 85
 P5DIR |= BIT1; // P5.1 is output; 86
 while (1) { // Main loop 87
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupts 88
 SendTime(); // Send Time to HyperTerminal 89
 } 90
} 91
 92
// Interrupt for the timer 93
#pragma vector=TIMERA0_VECTOR 94
__interrupt void TIMERA_ISA(void) { 95
 SetTime(); // Set Clock 96
 _BIC_SR_IRQ(LPM0_bits); // Clear LPM0 bits from 0(SR) 97
} 98
 99

Figure 3. Display Real-Time Clock Through UART

Please note that sprintf with modifiers requires full printf support. This should have been
already set by you when creating the project. If you did not, it is under MSP430 Compiler-
>Advanced Options->Language Options as shown in Figure 4.

CPE 325: Lab#8 Tutorial © A. Milenković 8

Figure 4. Setting Code Composer to Support sprintf

3 Putty versus Serial App

As a final note, it’s important to keep in mind how information is being sent through the UART
connection. As we begin this lab, we will generally use the Putty application. The Putty
application can only display ASCII characters. Since the UART communication protocol sends 8-
bit chunks of information, the USCI peripheral has buffers that are best suited to sending or
receiving 1-byte size data (with the added stop bits, etc.). It is simplest, therefore, to send and
receive ASCII characters as they are a convenient 8-bit size. Putty can only handle character
data types. If it receives non-character information, it will be interpreted as characters and
gibberish will appear on the screen.

However, we do not always want to send characters – we often want to send and view data of
different types (ints, floats, etc.). To view this type of information, we can use the convenient
UAH Serial Application developed by our former student Mladen Milosevic. This application
translates serial packets that are sent to it, and it can graphically represent the data versus
time. Being able to construct packets with the MSP430 and read them with a software
application is an important part of communication.

Because the UART protocol specifies that data is sent in 1-byte chunks, we must create a larger
structure of information that we’ll send. This is called a packet. The packet consists of
predetermined bytes that we construct and tell the receiving software application how to
interpret. The UAH Serial Application expects a packet that has a 1-byte header followed by the

CPE 325: Lab#8 Tutorial © A. Milenković 9

data followed by an optional checksum. The software must be told how many bytes of
information to expect as well as the type and number of data was sending and how it’s
ordered. To send the data from the MSP430, we first send our header byte followed by our
data that has been broken up into 1-byte chunks. The USCI UART buffer will then be fed each
byte at a time. It is important in this process to ensure that the packet that you are sending has
the same structure that the receiving device is expecting.

Figure 5 shows a demo program for sending a floating-point variable through UART. The 4-byte
float variable is sent in a 5-byte packet: header (1-byte) and 4-byte data (LSB byte is sent first).
The variable is increased by 0.1 every second with modulus 10.0 and reported through UART as
shown in the WDTISR.

/*--- 1
 * File: Demo8_D4.c 2
 * Function: Sends floating data to serial port (Demo UAH Serial App) 3
 * Description: This program defines a float, increases its value every seconds 4
 * with modulus 10.0 in a WDTISR. 5
 * The value of the floating-point data is sent to UART, 6
 * one byte at a time (LSB byte first). 7
 * The UAH Serial App is configured to read and plot float data type. 8
 * 9
 * Port: COM1 10
 * Baud rate: 115200 11
 * Data bits: 8 12
 * Parity: None 13
 * Stop bits: 1 14
 * Flow Control: None 15
 * 16
 * MSP430xG461x 17
 * ----------------- 18
 * /|\ | XIN|- 19
 * | | | 32kHz 20
 * |--|RST XOUT|- 21
 * | | 22
 * | P2.4/UCA0TXD|------------> 23
 * | | 115200 - 8N1 24
 * | P2.5/UCA0RXD|<------------ 25
 * | | 26
 * 27
 * Author: Prawar Poudel 28
 * Date: October 2018 29
--*/ 30
#include <msp430.h> 31
#include <stdint.h> 32
 33
volatile float myData; 34
 35
// UART Initialization 36
void UART_Initialize() { 37
 P2SEL |= BIT4+BIT5; // set UC0TXD and UC0RXD to transmit and receive data 38
 UCA0CTL1 |= BIT0; // software reset 39
 UCA0CTL0 = 0; // USCI_A0 control register 40

CPE 325: Lab#8 Tutorial © A. Milenković 10

 UCA0CTL1 |= UCSSEL_2;// Clock source SMCLK 41
 UCA0BR0 = 9; // 1048576 Hz / 115200 lower byte 42
 UCA0BR1 = 0; //upper byte 43
 UCA0MCTL = 0x02; // Modulation 44
 UCA0CTL1 &= ~BIT0; // UCSWRST software reset 45
} 46
 47
void sendChar(char myChar) { 48
 while (!(IFG2 & UCA0TXIFG)); 49
 UCA0TXBUF = myChar; 50
} 51
 52
int main() { 53
 WDTCTL = WDTPW+WDTHOLD; 54
 UART_Initialize(); 55
 _EINT(); 56
 IE1 |= WDTIE; 57
 58
 myData = 0.0; 59
 WDTCTL=WDT_ADLY_1000; 60
 __bis_SR_register(LPM0_bits+GIE); 61
} 62
 63
//goes from 0.0 to 9.9 and again repeats the cycle 64
#pragma vector=WDT_VECTOR 65
__interrupt void watchdog_timer(void) { 66
 char *myPointer = (char*)&myData; 67
 char index = 0; 68
 sendChar(0x55); 69
 for(index = 0;index<4;index++) 70
 sendChar(myPointer[index]); 71
 myData = (myData+0.1); 72
 if(myData>=10.0) 73
 myData = 0.0; 74
} 75
 76

Figure 5. MSP430 Program for Sending Floating-Point Data (UAH Serial App)

Figure 6 shows how to properly configure UAH Serial App for viewing the RAMP signal. We are
using a single channel, the size of the packet is 5 bytes, we are plotting one sample at a time
(they are arriving rather slowly in this example). Figure 7 shows the RAMP signal in the UAH
Serial App sent by the program from Figure 5.

CPE 325: Lab#8 Tutorial © A. Milenković 11

Figure 6. Configuring UAH Serial App for Viewing Ramp Signal

Figure 7. The RAMP signal in UAH Serial App

CPE 325: Lab#8 Tutorial © A. Milenković 12

4 References

To understand more about UART communication and the USCI peripheral device, please read
the following references:

 Davies’ MSP430 Microcontroller Basics, pages 493 – 497 and pages 574 – 590

 MSP430 User’s Guide, Chapter 19, pages 551 – 586

