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Objective  

Review numeral systems, storing and interpreting numbers in modern computers, including 
unsigned and signed integers and arithmetic operations on them, BCD representation, and 
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1 Numeral Systems: Decimal, binary, hexadecimal, and octal 
We ordinarily represent numbers using positional decimal number system that has 10 as its 
base (also known as base-10 or denary system). A positional numeral system is a system for 
representation of numbers by an ordered set of numeral symbols (called digits) in which the 
value of a numeral symbol depends on its position - for example, the "ones place", "tens place", 
"hundreds place," and so on. Note: other notations such as Roman are not positional. The 
decimal numeral system uses 10 symbols (digits): 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. It is the most 
widely used numeral system, perhaps because humans have ten fingers over both hands.  

A decimal number 456 could also be represented as four hundreds (102), 5 tens (101), and 6 
ones (100) and can be written as follows:  

45610 = 4 ∙ 102  + 5 ∙ 101 + 6 ∙ 100 = 400 + 50 + 6 

position 2 1 0 
weight 102 101 100 
digit 4 5 6 

The binary positional numeral system, or the base-2 (radix-2) number system, represents 
numeric values using only two symbols, 0 and 1. These symbols can be directly implemented 
using logic gates and that is why all modern computers internally use the binary system to store 
information.  

For example, 101112 represents a binary number with 5 binary digits. The left-most bit is known 
as the most significant bit (msb) – in our case it has bit position 4. The rightmost bit is known as 
the least-significant bit (lsb) or bit at position 0. This binary number 101112 can be converted to 
a corresponding decimal number as follows:  

101112 = 1 ∙ 24  + 0 ∙ 23 +  1 ∙ 22  + 1 ∙ 21 + 1 ∙ 20 = 16 + 4 + 2 + 1 = 2310 

position 4 3 2 1 0 
weight 24 23 22 21 20 
digit 1 0 1 1 1 

Hexadecimal (base-16, hexa, or hex) is a positional numeral system with the base 16. It uses 
sixteen distinct symbols, the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F 
(or a through f) to represent values ten to fifteen, respectively.   

For example, a hex number 1A316 corresponds to:  

1𝐴316 = 1 ∙ 162  + 10 ∙ 161 +  3 ∙ 160 = 256 + 160 + 3 = 41910 

To convert the hex number into its binary format, simply replace each hex symbol with its 4-bit 
binary counterpart (0 – 00002, 1 – 00012, . . ., 9 – 10012, A – 10102, B – 10112, C – 11002, D – 
11012, E – 11102, F – 11112).  

1𝐴316 = 1_1010_00112 (the ‘_’ character is here just for easier visualization) 

Hexademical numbers are used as a human friendly representation of binary coded values, so 
they are often used in digital electronics and computer engineering. Since each hexadecimal 
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digit represents four binary digits (bits), it is a compact and easily translated shorthand to 
express values in base two. 

Octal (also base-8) is a number system with the base 8 that uses 8 distinct symbols 0, 1, 2, 3, 4, 
5, 6, and 7.  An octal number 3728 corresponds to: 

3728 = 3 ∙ 82  + 7 ∙ 81 +  2 ∙ 80 = 192 + 56 + 2 = 25010 

2 Conversion to binary from other numeral systems 
To convert a decimal positive number to its binary equivalent, the number is divided by two, 
and the remainder is the least-significant bit at position 0. The result is again divided by two 
and the remainder is the next bit at position 1. This process repeats until the result of division 
becomes zero. 

For example, to convert 2310 to binary, the following steps are performed: 

Operation    Remainder  (Position) 

23 ÷ 2 = 11  1    (bit 0) 

11 ÷ 2 = 5   1    (bit 1) 

5 ÷ 2 = 2    1    (bit 2) 

2 ÷ 2 = 1    0    (bit 3) 

1 ÷ 2 = 0    1    (bit 4) 

Reading the sequence of remainders from the bottom up gives the binary numeral 101112. 

This method works for conversion from any base, but there are better methods for bases which 
are powers of two, such as octal and hexadecimal given below. 

As described above, to convert a binary number to a decimal number use the following 
approach: 

101112 = 1 ∙ 24  + 0 ∙ 23 +  1 ∙ 22 + 1 ∙ 21 +  1 ∙ 20 = 16 + 4 + 2 + 1 = 2310 

Octal and hexadecimal numbers are easily converted to binary numbers and vice versa. For 
example, an octal number 3728 is converted into binary by simply replacing each octal digit with 
its binary counterpart, 011_111_0102. To get a corresponding hex representation, create 
groups of 4 bits starting from the least significant bit. By replacing each group with a 
corresponding hex digit, a hex representation is created (see below). 

3728 = 011_111_0102 = 0FA16 

1011_01012 = 2658 =B516. 
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3 Storing and interpreting information in modern computers 
An n-bit binary number can differentiate between 2n things. In digital computers information 
and space are organized in bytes. A byte has 8 bits and can represent up to 28 = 256 things. 

Definitions: 

 1 byte = 8 binary digits = 8 bits (e.g. 1001_00112) 

 ½ byte = 1 nibble = 4 bits 

 In 16-bit computers 1 word = 2 bytes (16 bits). 

 In 32-bit computers 1 word = 4 bytes (32 bits), a half-word is 2 bytes (16-bits), and a 
double word is 8 bytes (64 bits).   

Meaning of bits and bytes is assigned by the convention. Some examples of common encoding 
formats are as follows: 

 1 byte ASCII = one of 256 alphanumeric or special-purpose text characters  
(definitions are in the ASCII table, see http://en.wikipedia.org/wiki/ASCII)  

 1 byte = one short unsigned integer (0 – 255)  

 1 byte = one short signed integer (-128 – 127)  

 1 byte = two Binary Coded Decimal (BCD) digits (i.e. one per nibble) 

 1 byte = two hexadecimal (hex) digits (one per nibble) 

 1 byte = eight individual bits (e.g. 8 status flags) 

 2 bytes = one unsigned integer (0 – 65,535)  

 2 bytes = one signed integer (-32,768 – 32,767) 

 4 bytes = one unsigned long integer (0 – 4,294,967,295) 

For example, the IAR Software Development Environment for MSP430 assumes the following 
conventions for standard C data types (see Table 1). 

Table 1. C data types in IAR, sizes, ranges, and alignments in memory 

Data type  Size  Range  Alignment 

bool  8 bits  0 to 1  1 

char  8 bits  0 to 255  1 
signed char  8 bits  -128 to 127  1 

unsigned char  8 bits  0 to 255  1 

signed short  16 bits  -32768 to 32767  2 

unsigned short  16 bits  0 to 65535  2 
signed int  16 bits  -32768 to 32767  2 

unsigned int  16 bits  0 to 65535  2 

signed long  32 bits  -231 to 231-1  2 

unsigned long  32 bits  0 to 232-1  2 
signed long long  64 bits  -263 to 263-1  2 

unsigned long long  64 bits  0 to 264-1  2 

float 32 bits  2 

double 64 bits  2 

http://en.wikipedia.org/wiki/ASCII
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4 Integers 
The term integer is used in computer engineering/science to refer to a data type which 
represents some finite subset of the mathematical integers. Integers may be unsigned or 
signed.  

An n-bit unsigned integer is defined as follows: 

𝐴 = 𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = 𝐴𝑛−1 ∙ 2𝑛−1  + 𝐴𝑛−2 ∙ 2𝑛−2 + ⋯ +𝐴1 ∙ 21 +  𝐴0 ∙ 20 

An n-bit unsigned integer can encode 2n numbers that represent the non-negative values from 
0 (𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = 00 … 00) through 2n−1 (𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = 11 … 11).   

There are three different ways to represent negative numbers in a binary numeral system. The 
most common is two’s complement, which allows a signed integer type with n bits to represent 
numbers from −2(n−1) through 2(n−1)−1. Two’s complement arithmetic is convenient because 
there is a perfect one-to-one correspondence between representations and values, and 
because addition, subtraction and multiplication do not need to distinguish between signed and 
unsigned integer types (thus same hardware resources can be used to perform these 
operations).  

The other possibilities for representing signed numbers are sign-and-magnitude and ones' 
complement. Sign and Magnitude representation uses n-1 bits to convey the magnitude with 
the most significant bit (MSB) used for sign (0 for +, 1 for -). The problem with this approach is 
that there exists two representations for value 0 (00...002 for a positive 0 and 10...002 for a 
negative 0). With one’s complement representation a negative binary number is created by 
applying the bitwise NOT to its positive counterpart. Like sign-and-magnitude representation, 
ones' complement has two representations of 0: 000000002 (+0) and 111111112 (−0). As an 
example, the ones' complement form of 001010112 (43) becomes 110101002 (−43). The range 
of signed numbers using ones' complement in a conventional eight-bit byte is −12710 to +12710.   

We focus on two’s complement because it is the dominant way to represent signed integers 
today.   

4.1 Two’s Complement 

In the two's complement notation, a positive number is represented by its ordinary binary 
representation, using enough bits so that the MSB bit, also known as the sign bit, is 0. An n-bit 
integer in two’s complement is defined as follows: 

𝐴 = 𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = −𝐴𝑛−1 ∙ 2𝑛−1  + 𝐴𝑛−2 ∙ 2𝑛−2 + ⋯ +𝐴1 ∙ 21 +  𝐴0 ∙ 20 

When the MSB bit is zero, 𝐴𝑛−1 = 0, a positive number in range from 0 (𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 =
00 … 00) to (2𝑛−1 − 1) (𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = 01 … 11) is represented. When the MSB bit is 
one, 𝐴𝑛−1 = 1, a negative number from −2𝑛−1  (𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = 10 … 00) to −1 
(𝐴𝑛−1𝐴𝑛−2 … 𝐴1𝐴0 = 11 … 11) is represented. So, the range of signed numbers that can be 
represented with n bits in 2’s complement is from −2𝑛−1 to (2𝑛−1 − 1). There is only one 
representation of 0 (00....002). 
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Table 2 shows ranges of signed and unsigned integers depending on the number of bits used for 
representation. 

Table 2. Common integer data types and ranges.  

Bits Name Range 

n n-bit integer 
(general case) 

Signed: ( − 2n − 1) to (2n − 1 − 1) 

Unsigned: 0 to (2n − 1) 
8 byte, octet Signed: −128 to +127 

Unsigned: 0 to +255 

16 halfword, word Signed: −32,768 to +32,767 

Unsigned: 0 to +65,535 
32 word, 

doubleword, 
longword 

Signed: −2,147,483,648 to +2,147,483,647 

Unsigned: 0 to +4,294,967,295 

64 doubleword, 
longword, long 
long, quad, 
quadword 

Signed: −9,223,372,036,854,775,808 to 
+9,223,372,036,854,775,807 

Unsigned: 0 to +18,446,744,073,709,551,615 

128 octaword Signed: 
−170,141,183,460,469,231,731,687,303,715,884,105,728 
to 
+170,141,183,460,469,231,731,687,303,715,884,105,727 

Unsigned: 0 to 
+340,282,366,920,938,463,463,374,607,431,768,211,455 

4.2 Calculating two’s complement 

The two's complement operation is the negation operation. In finding the two's complement of 
a binary number, the bits are first inverted, or "flipped", by using the bitwise NOT operation 
and then the constant 1 is added to that value.  

Let’s assume 8-bit signed binary numbers. Consider A, A = 2310 = 1716 = 000101112. We would 
like to find the two’s complement for A or (-A). The steps are shown below.   

A:   0001 0111 (23) 

-------------------------------------- 

A:   1110 1000 (first complement of A) 

+               1 (1) 

====================================== 

-A:   1110 1001 (-23) 

So the two’s complement representation of -2310 = 111010012 = E916.   

You may shorten this process by using hexadecimal representation as follows: 
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A    : 17 

one’s complement of A : E8 

    +  1 

   ------------------ 

     E9 

A shortcut to manually convert a binary number into its two's complement is to start at the 
least significant bit (LSB), and copy all the zeros (working from the LSB toward the MSB) until 
the first 1 is reached; then copy that 1, and flip all the remaining bits. This shortcut allows you 
to convert a number to its two's complement without first forming its ones' complement. For 
example: the two's complement of "00010111" is "11101001", where the underlined digits are 
unchanged by the copying operation. 

4.3 Arithmetic Operations: Addition 

Adding two's-complement numbers requires no special processing if the operands have 
opposite signs: the sign of the result is determined automatically. For example, adding A=15 
and B=-5 if n=8 (8-bit numbers): 

  1111 1111 (carry bits=C8C7...C1) 

-------------------------------- 

A:   0000 1111 (15) 

B: + 1111 1011 (-5) 

================================ 

S:   0000 1010 (10) 

 

This process depends upon restricting arithmetic operations to 8 bits of precision; a carry to the 
8th (nonexistent) bit position, C8, is ignored producing arithmetically correct result in two’s 
complement. The Carry (C) flag is set to the most significant carry bit, C=C8. Please note that the 
Carry flag does not have any particular meaning for signed numbers in 2’s complement. 
However, if 8-bit values represent unsigned numbers (15 and 251 in our example), the Carry 
flag indicates that the result of addition is outside the range of numbers that can be 
represented (from 0 to 255). And indeed, 251+15=266, but our 8-bit result contains 266 % 256 
= 10. Using the carry bit as the most significant field of the 9-bit result would give a correct 
result of the unsigned addition. 

The last two bits of the carry row (C8 and C7) contain vital information for 2’s complement 
arithmetic: whether the calculation resulted in an arithmetic overflow (V flag), which means 
that the result is outside the range of the 2’s complement system. An overflow condition exists 
when a carry (an extra 1) is generated into but not out of the far left sign bit, or out of but not 
into the sign bit. As mentioned above, the sign bit is the leftmost bit of the result.  

If the last two carry bits are both 1's or both 0's, the result is valid; if the last two carry bits are 
"1 0" or "0 1", a sign overflow has occurred. Conveniently, an XOR operation on these two bits 
can quickly determine if an overflow condition exists. As an example, consider the 4-bit addition 
of A=7 and B=3: 
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  0111 (carry bits) 

---------------------------------------------- 

A:   0111 (7) 

B: + 0011 (3) 

============================================== 

S:   1010 (-6) Invalid in 2’s complement 

 

In this case, the far left two carry bits are "01", which means there was a two's-complement 
addition overflow. That is, ten is outside the permitted range for 4-bit numbers in 2’s 
complement, which ranges from −8 to 7. 

An alternative way to calculate Overflow (V) flag is to consider the sign bits of the operands and 
the result.  Let us assume we add two 8-bit integers in two’s complement, A and B, and the 
result is an 8-bit S.  The MSB bits of the operands and the result can be used to calculate the V 
flag.  An overflow in case of addition occurs if one of the following two conditions are met: (a) 
both operands A and B are positive numbers (A7=0 and B7=0), and the result S is a negative 
number (S7=1), and (b) both operands A and B are negative numbers (A7=1 and B7=1), and the 
result S is a positive number (S7=0). Consequently, overflow flag in case of addition can be 
calculated as follows: 

𝑉𝐴𝑑𝑑 = 𝐴7 ∙ 𝐵7 ∙ 𝑆7 + 𝐴7 ∙ 𝐵7 ∙ 𝑆7 

In addition to the Carry flag and the Overflow flag, two more flags are commonly used in digital 
computers, Zero (Z) and Negative (N).  The Z flag is set when the result of the current arithmetic 
or logic operation is equal to 0 (S=0) and reset otherwise.  The negative flag keeps information 
about the sign bit of the result S (N=S7).  

4.4 Arithmetic Operations: Subtraction 

Computers usually use the method of complements to implement subtraction for numbers in 
two’s complement. But although using complements for subtraction is related to using 
complements for representing signed numbers, they are independent. Direct subtraction works 
with two's-complement numbers as well. Like addition, the advantage of using two's 
complement is the elimination of examining the signs of the operands to determine if addition 
or subtraction is needed. For example, subtracting -5 from 15 is really adding 5 to 15, but this is 
hidden by the two's-complement representation: 

R:  11110 000 (borrow bits) 

-------------------------------- 

A:   0000 1111 (15) 

B: - 1111 1011 (-5) 

================================ 

S:   0001 0100 (20) 

Overflow is detected the same way as for addition, by examining the two leftmost (most 
significant) bits of the borrow row (R); overflow occurs if they are different.  Alternatively, the 
overflow flag can be calculated as follows: 
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𝑉𝑆𝑢𝑏 = 𝐴7 ∙ 𝐵7 ∙ 𝑆7 + 𝐴7 ∙ 𝐵7 ∙ 𝑆7 

An easy way to understand this equation is to ask yourself the following: when does an 
overflow occurs in operation S = A – B. If both numbers A and B are positive (A7=0 and B7=0) or 
negative (A7=1 and B7=1), the overflow cannot occur because the result will be within the range 
we can represent. The overflow occurs if A is a positive and B is a negative and the result S turns 
out to be negative – since A is a positive, subtracting a negative B would result in an even 
greater positive result – however, if the result exceeds the range of positive numbers that can 
be represented, the sign bit will be set and that is a negative number in two’s complement. This 
condition is captured by the first term in the equation above. Another scenario when overflow 
occurs is if A is a negative number, B is a positive number, and the results is a positive number. 
Again, expected result is a negative number, but if it exceeds the range of negative numbers 
that can be represented, the result will turn out to be a positive number. The second term in 
the equation above captures that scenario. If either term is computed to a logic one, the 
overflow bit is set.  

Another example is a subtraction operation where the result is negative: 15 − 35 = −20: 

R:  11100 000 (borrow bits) 

-------------------------------- 

A:   0000 1111 (15) 

B: - 0010 0011 (35) 

================================ 

S:   1110 1100 (-20) 

Arithmetic, logic, and shift operations on operands are performed in Arithmetic Logic Units or 
ALUs. Typically an adder is used for both addition and subtraction operations as mentioned 
above. To perform a subtract operation, S = A – B, an equivalent operation in two’s 

complement can be carried out as follows: S = A + (B + 1). Remember, we already showed that 

–B = B + 1. The first-complement of B is computed by inverting the input operand B, and 
adding a constant one is achieved by setting the input Carry bit to 1 (C0=1). This way, subtract 
operations are implemented using adder logic. Often that is the case and the flags are set 
following the rules for additions.  

Using the previous example A=15 and B=35:  

  00011 111 (carry bits) 

-------------------------------- 

A:   0000 1111  

B: + 1101 1100  

+         1 

================================ 

S:   1110 1100 (-20) 

The result is identical, S=1110_11002 (-20). The flag bits are set as follows:  
C=C8=0; Z=0; V=C8 xor C7=0 xor 0=0; N=S7=1.  

A careful reader would notice that the most significant bit of the borrow row R8=1 is different 
from the most significant bit of the carry row (C8=0) in the examples above. Processor 
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manufacturers may decide on the meaning of the Carry bit for subtraction. If the carry flag, C, 
should keep the value that is equivalent to R8 and the adders are used for subtractions, then 

simply the bit C8 is inverted and assigned to the carry bit (C=C8) when a subtraction is 
performed. In other architectures the carry bit simply takes the value of C8 as is. In this course 
we will always assume the latter approach. 

4.5 Arithmetic Operations: Multiplication 

The product of two n-bit numbers can potentially require 2n bits to encode the result. If the 
precision of the two two's-complement operands is doubled before the multiplication, direct 
multiplication (discarding any excess bits beyond that precision) will provide the correct result. 
For example, take 6 × −5 = −30 and n=4. First, the precision is extended from 4 bits to 8. Then 
the numbers are multiplied, discarding the bits beyond 8 (shown by 'x'): 

 

          00000110  (6) Multiplicand 

        × 11111011  (-5) Multiplier (M7M6M5M4M3M2M1M0) 

========================= 

               110  Multiplicand*M0*20  

+             110   Multiplicand*M1*21 

+              0    Multiplicand*M2*22 

+           110     Multiplicand*M3*23 

+          110      Multiplicand*M4*24 

+         110       Multiplicand*M5*25 

+        x10        Multiplicand*M6*26 

+       xx0         Multiplicand*M7*27 

 ======================== 

P:      x11110010     (-30) 

 

4.6 Binary Coded Decimal Numbers 

Binary-coded decimal (BCD) is an encoding for decimal numbers in which each decimal digit is 
represented by its own binary sequence. Its main virtue is that it allows easy conversion to 
decimal digits for printing or display and faster decimal calculations. Its drawbacks are the 
increased complexity of logic circuits needed to implement mathematical operations and a 
relatively inefficient encoding—it occupies more space than a pure binary representation. For 
example, a byte can represent positive integers in range from 0 to 99 if using packed BCD 
representation, whereas regular binary represents positive integers in range from 0 to 255. 
Though BCD is not as widely used as it once was, decimal fixed-point and floating-point are still 
important and still used in financial, commercial, and industrial computing. 

To BCD-encode a decimal number using the common encoding, each decimal digit is stored in a 
four-bit nibble. 
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Decimal:    0     1     2     3     4     5     6     7     8     9 

BCD:     0000  0001  0010  0011  0100  0101  0110  0111  1000  1001 

Thus, the BCD encoding for the number 127 would be: 0001_0010_0111 

Since most computers store data in eight-bit bytes, there are two common ways of storing four-
bit BCD digits in those bytes: 

 each digit is stored in one nibble of a byte, with the other nibble being set to all zeros, 
all ones (as in the EBCDIC code), or to 0011 (as in the ASCII code)  

 two digits are stored in each byte (so called packed BCD encoding).  

Unlike binary encoded numbers, BCD encoded numbers can easily be displayed by mapping 
each of the nibbles to a different character. Converting a binary encoded number to decimal for 
display is much harder involving integer multiplication or divide operations. 
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5 Fraction Numbers 
To represent real numbers in computers two major approaches are used: fixed-point and 
floating-point representation.  

5.1 Fixed-point 

For fixed-point representation, the binary radix point is assigned to a fixed location in a byte (or 
word). Fixed-point numbers are useful for representing fractional values when the executing 
processor has no floating-point unit (FPU) and when fixed-point representation provides 
improved performance and sufficient accuracy for the application at hand. Most low-cost 
embedded microprocessors and microcontrollers do not have an FPU.  

In binary fixed-point numbers, each magnitude bit represents a power of two, while each 
fractional bit represents an inverse power of two. Thus the first fractional bit is ½, the second is 
¼, the third is ⅛ and so on. Signed fixed-point numbers in two's complement format are defined 
as follows, where m and f are the number of bits in the integer portion (M) and the fraction 
portion (F), respectively: 

𝐴 = 𝐴𝑚−1𝐴𝑚−2 … 𝐴0. 𝐴−1𝐴−2 … 𝐴−f = 
−𝐴𝑚−1 ∙ 2𝑚−1  + 𝐴𝑚−2 ∙ 2𝑚−2 + ⋯ + 𝐴0 ∙ 20 
+𝐴−1 ∙ 2−1 + ⋯ 𝐴−f ∙ 2−f 

The upper bound for this representation is 2(m−1)−2(−f) and the lower bound is given by −2(m−1). 

Unsigned fixed-point numbers are defined as follows (the range is from 0 to 2m−2−f): 

𝐴 = 𝐴𝑚−1𝐴𝑚−2 … 𝐴0. 𝐴−1𝐴−2 … 𝐴−f = 
𝐴𝑚−1 ∙ 2𝑚−1  + 𝐴𝑚−2 ∙ 2𝑚−2 + ⋯ + 𝐴0 ∙ 20 
+𝐴−1 ∙ 2−1 + ⋯ 𝐴−f ∙ 2−f 

Let’s consider the following unsigned number with 5-bit integer portion and 3-bit fraction: 

00000.1012 = 0.62510 

Granularity of precision is a function of the number of fractional bits assigned. Thus, if f=3, the 
smallest fraction is 2−3 = 0.125. The maximum number that can be represented in this notation 
(8 bits, 5 for integer portion, 3 for fraction) is 63.875 (encoded as 11111.111) and the minimum 
is 0.0 (encoded as 00000.000).   

5.2 Floating-point 

The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most widely-used 
standard for floating-point computation, and is followed by many CPU (Central Processing Unit) 
and FPU (Floating-Point Unit) implementations. The standard defines formats for representing 
floating-point numbers (including negative zero and denormal numbers) and special values 
(infinities and NaNs), together with a set of floating-point operations that operate on these 
values. It also specifies four rounding modes and five exceptions (including when the exceptions 
occur, and what happens when they do occur). 
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Floating-point numbers are typically packed into a computer datum as the sign bit, the 
exponent field, and the significand (mantissa), from left to right. For the IEEE 754 binary 
formats they are apportioned as shown in Table 3. 

 

Table 3. Floating-point types as defined by the IEEE 754 standard.  

Type Sign Exponent Exponent bias Significand Total 

Half (IEEE 754-2008) 1 5 15 10 16 

Single 1 8 127 23 32 

Double 1 11 1023 52 64 

Quad 1 15 16383 112 128 

 

Let’s take a look at a single precision floating-point format that requires 32 bits as follows: 
S_EEEEEEEE_FFFFFFFFFFFFFFFFFFFFFFF, where 

S: sign bit, E: exponent bits; F – mantissa (significand) bits 

position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

field S E7 E6 E5 E4 E3 E2 E1 E0 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10 F-11 F-12 F-13 F-14 F-15 F-16 F-17 F-18 F-19 F-20 F-21 F-22 F-23 

 

The 32-bit representation consists of three parts. The first bit is used to indicate if the number 
is positive or negative. The next 8 bits are used to indicate the exponent of the number, and the 
last 23 bits are used for the fraction. 

The value of the single-precision number is determined as follows: 

Value = (-1)S 2 (E-127)*(1.F) 

Converting decimal digits to IEEE binary floating point is a little tricky. There are 3 steps.  

 The first step in the conversion is the simplest. This is determining the sign bit. If the 
number is positive, then the sign bit is 0, S=0, otherwise it is 1, S=1. 

 The next eight digits are used to express the exponent, which we will figure out last. 

 The final 23 digits are used to express the fraction.  

Let us first illustrate the method for the conversion using a simple example. We will use -210.25 
to walk through the conversion. Determining sign bit is easy – this is a negative number, so S=1. 

The next step is to convert the absolute value of your decimal number to binary (210.25). It is 
easiest to focus on the integer portion of the number first, then the fraction. 210 is 11010010 
or 128+64+16+2, otherwise expressed as: 

21010 = 1 ∙ 27  + 1 ∙ 26 + 0 ∙ 25 +  1 ∙ 24 + 0 ∙ 23 +  0 ∙ 22 + 1 ∙ 21 +  0 ∙ 20 = 110100102 
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Next, we need to convert the decimal part. To do this we have to convert the number into a 
binary sequence that takes the following form: 

𝐴−1 ∙ 2−1 + 𝐴−2 ∙ 2−2 + 𝐴−3 ∙ 2−3 + .  .  .  

Luckily .25 is 1/4 and so this is easy to convert it to binary:  

0.2510 = 0 ∙ 2−1  + 1 ∙ 2−2 =. 012 

Thus, the decimal 210.25 is represented as 11010010.01 in binary.  

210.2510 = 11010010. 012 = 1.101001001 ∙ 27 

The next step is to normalize this number so that only one non-zero decimal place is in the non-
fraction part of the number. To do this we must shift the decimal place 7 positions to the left 
(see above). The number 7 becomes important so we note it. This process leaves us with the 
number 1.101001001, which is the normalized form 1.F. The fraction F is represented in the last 
23 bit places in the 32 bit binary, F=101001001. The fraction is padded with 0's to fill in the full 
23 bits - leaving us with F=10100100100000000000000 for the mantissa or significand. 

So we now have the first bit S, S=1, and the last 23 bits of the 32 bit sequence. We must now 
derive the middle 8 bits. To do this we take our exponent (7) and add 127 (the exponent bias 
for single-precision numbers) to get E=134. We then express this number as an 8 bit binary. This 
is 10000110 (or 128+4+2). Now we have the middle bits and can stitch together all bits to get a 
complete single-precision binary representation: 

1_10000110_101001001000000000000002 = C352400016 

We can convert this bit sequence back into a number by reversing the process. First we can 
note by the leading 1 that the number is negative. Next we can determine the exponent. 
10000110 is binary for 2+4+128 or 134. 134-127 is 7, so the exponent is 7. Finally we take the 
last 23 digits, convert them back into the original fraction (adding the preceding 1.) to get: 

1.101001001 

Moving the decimal place to the right by 7 (corresponding to the exponent) we get: 

11010010.01 

This binary is equal to 128+64+16+2 + 1/4 or 210.25. Once we apply the negative sign (indicated 
by the leading bit set to 1) we get our original number: 

-210.25 

Special Values 

IEEE reserves exponent field values of all 0s and all 1s to denote special values in the floating-
point scheme. 

Zero 

As mentioned above, zero is not directly representable in the straight format, due to the 
assumption of a leading 1 (we need to specify a true zero mantissa to yield a value of zero). 
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Zero is a special value denoted with an exponent field of zero and a fraction field of zero. Note 
that -0 and +0 are distinct values, though they both compare as equal. 

Denormalized Numbers 

If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then 
the value is a denormalized number, which does not have an assumed leading 1 before the 
binary point. Thus, this represents a number (-1)s × 0.F × 2-126, where S is the sign bit and f is the 
fraction. For double precision, denormalized numbers are of the form (-1)s × 0.F × 2-1022. From 
this you can interpret zero as a special type of denormalized number. 

Infinity 

The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of all 0s. 
The sign bit distinguishes between negative infinity and positive infinity. Being able to denote 
infinity as a specific value is useful because it allows operations to continue past overflow 
situations. Operations with infinite values are well defined in the IEEE floating-point. 

Not A Number 

The value NaN (Not a Number) is used to represent a value that does not represent a real 
number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero 
fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signaling NaN). 

A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely through 
most arithmetic operations. These values pop out of an operation when the result is not 
mathematically defined. 

An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an exception 
when used in operations. SNaN's can be handy to assign to uninitialized variables to trap 
premature usage.  

Semantically, QNaNs denote indeterminate operations, while SNaNs denote invalid operations. 

  



 

CPE 323 Data types and number representations     © A. Milenković 16 

Summary 

Table 4 summarizes IEEE 754 floating-point representation for fractional numbers. 

 

Table 4. Floating-point representation (b is bias). 

Sign (s) Exponent (e) Fraction (f) Value  

0 00 ... 00 000....0 +0 

0 00 ... 00 
00 ... 01 
11 ... 11 

Positive denormalized real  

0.f  2(-b+1)   

0 
00 ... 01 
11 ... 10 

xx ... xx 
Positive normalized real 

1.f  2(e-b)   

0 11 ... 11 00 ...  00 +Infinity 

0 11 ... 11 
00 ... 01 
01 ... 11 

SNaN 

0 11 ... 11 
10 ... 00 
11 ... 11 

QNaN 

1 00 ... 00 000....0 -0 

1 00 ... 00 
00 ... 01 
11 ... 11 

Negative denormalized real  

-0.f  2(-b+1)   

1 
00 ... 01 
11 ... 10 

xx ... xx 
Negative normalized real 

-1.f  2(e-b)   

1 11 ... 11 00 ...  00 -Infinity 

1 11 ... 11 
00 ... 01 
01 ... 11 

SNaN 

1 11 ... 11 
10 ... 00 
11 ... 11 

QNaN 

6 References  
http://en.wikipedia.org/wiki/Binary_number 

http://en.wikipedia.org/wiki/Two's_complement 

http://en.wikipedia.org/wiki/IEEE_754 

 

  

http://en.wikipedia.org/wiki/Binary_number
http://en.wikipedia.org/wiki/Two's_complement
http://en.wikipedia.org/wiki/IEEE_754
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7 Exercises  
 

Problem #1.  

Fill in the following table. We consider a 16-bit memory location and you should provide binary, 
hexademical, decimal (as positive integer), and binary coded decimal representations. Show 
your work as illustrated for (i). Note: for 4-bit BCD digits if the value is outside the range 0-9 use 
‘?’.   

 16-bit binary Hexadecimal  
(4 hex digits) 

Decimal  
(unsigned int) 

2-byte packed 
BCD  
(4-BCD digits) 

(i) 0011.0000.0011.1100 303C 12,348 303? 

(a)  cbf3   
(b)   9,080  

(c) 1001.0100.0010.1100    

(d)  1943   

 

(i) 

Here 12,348 decimal representation is provided. We convert this number into a hexadecimal 
number by dividing by 16 as follows.  

12348/16 =  771  12 

771/16 =   48  3 

48/16 =   3  0 

3/16 =   0  3 

From hexadecimal representation we can get directly binary and BCD representations. 

1234810 = 303C16 = 0011_0000_0011_11002 = 303? (“?” marks an illegal BCD digit).  

 

Problem #2. 

What is the range of unsigned and signed integers that can be represented using 16 bits? 

Range of 16-bit unsigned integers:____________ 

Range of 16-bit signed integers (in 2’s complement):_________ 

Consider the following 16-bit hexadecimal numbers given in the second column of the table 
below.  Each of these values can be interpreted as an unsigned 16-bit integer or a signed 16-bit 
integer represented in 2’s complement.  

Provide the decimal value for each number and interpretation.  Show your work as illustrated in 
(i). 
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 16-bit hex  Unsigned int Signed int (2’s complement) 
(i) A223 41507 -24029 

(a) 81C2   

(b) B607   
(c) 39CD   

(d) 0012   

(i) unsigned: A22316 = 10*163 + 2*162 + 2*161 + 3*160 = 41,50710  

      signed: A22316 = 1010.0010.0010.00112 => this is a negative number;  

      two’s complement is: 0101.1101.1101.1101 = 5DDD16 = 24,02910 => A22316 = -24,029 

 

Problem #3. 

Consider the following arithmetic operations. Find the results and set the flags C, V, N, and Z 
accordingly. Show your work using hexadecimal or binary representation. 

(a) 8-bit, two’s complement  

   2410 + 10510  

(b) 8-bit, two’s complement  

   (-55)10 - 6810  

(c) 16-bit, two’s complement  

   (-45)10 + 8810  

 

Problem #4. 

(a) Convert the following number from decimal to a single-precision IEEE-754 floating point 
number. 

-32.12510 

(b) Convert the following IEEE-754 32-bit floating point number from hex/binary to decimal. 

60E3AB0016  

(c) What data type would you need to use to represent the following number, 1,048,576.0625, 
without losing any significant bits of the mantissa? Explain your answer.   

(d) What is the smallest negative normalized half-precision floating-point number? Give its 
decimal representation. Show your work. 

(e) What is the largest positive normalized half-precision floating-point number? Give its 
decimal representation. Show your work. 


