
CPE 323 MSP430 Assembly © A. Milenković 1

CPE 323 MSP430
MSP430 Assembly Language Programming

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:
Introduce MSP430 assembly language

Contents

Contents .. 1

1 Introduction ... 2

2 Assembly Language Directives .. 4

3 Decimal and Integer Addition of 32-bit Integers ... 8

4 Counting Characters ‘E’ in a String .. 11

4.1 Count Characters Assembly Code .. 12

5 Subroutines .. 14

5.1 Subroutine Nesting ... 15

5.2 Parameter Passing .. 15

6 Allocating Space for Local Variables .. 22

7 To Learn More ... 24

mailto:milenka@uah.edu

CPE 323 MSP430 Assembly © A. Milenković 2

1 Introduction

In this section we will introduce MSP430 Assembly Language Programing using several
illustrative examples. Before we do that, let us first talk briefly about developing software for
embedded systems in general.

In desktop/server computing systems we typically develop and debug software programs on
the same or a similar platform the program is going to run on. However, software for
embedded systems is typically developed on a workstation/desktop computer and then
downloaded into the target platform (embedded system) through a dedicated interface.
Debugging of embedded systems is made possible through either software emulation or
dedicated debuggers that allow us to interact with a program running on the target platform.

Software for embedded systems is typically developed using modern software development
environments (SDEs) that integrate editors, assembler, compiler, linker, stand-alone simulator,
embedded emulator or debugger, and flash programmer. Examples of SDEs we can use are IAR
for MSP430 and TI’s Code Composer Studio for MSP430 (used in the laboratory). Below is a
brief description of major components of modern SDEs.

 Editor: Allows you to enter source code (assembly, C, or C++). A good editor will have
features to help you format your code nicely for improved readability, comply with
syntax rules, easily locate definitions and symbols, and other useful features that make
life of a software developer easier.

 Assembler: a program that translates source code written in assembly language into
executable code.

 Compiler: a program that translates source code written in C or C++ into executable
code.

 Linker: a program that combines multiple files with executable code and routines from
libraries and arranges them into memory that complies with rules for a specific
microcontroller.

 Simulator: a program that simulates operation of the microcontroller on a desktop
computer, thus alleviating the need to have actual hardware when testing software.
Simulators vary in functionality – some include support only for the processor, whereas
others can also simulate behavior of peripheral devices.

 Flash Programmer: a program that downloads the embedded software into flash
memory of the microcontroller.

 Embedded emulator/debugger: a program running on the desktop computer that allows
software under development to run on the target platform and controls its execution
(i.e., allowing the program under development to run one instruction before returning
control to the debugger or to run until a breakpoint is reached). It controls running of
the program on the target through a special interface, e.g., JTAG for MSP430.

CPE 323 MSP430 Assembly © A. Milenković 3

Figure 1 shows a typical development flow that starts from assembly code residing in one or
more input files (with extension .asm or .s43 for MSP430 assembly programs). These files are
translated into object files using assembler. The object files together with libraries are tied
together by linker that produces an executable file. The executable file is then loaded into the
simulator or downloaded into the target platform using flash programmer.

ASM file
(*.asm)

Assembler

Object File

ASM file
(*.asm)

Assembler

Object File

ASM file
(*.asm)

Assembler

Object File

Linker Static Libraries

Executable File

Loader

Machine Code
in Memory

Figure 1. Design flow from assembly programs to machine code.

CPE 323 MSP430 Assembly © A. Milenković 4

2 Assembly Language Directives
Assembly language directives tell the assembler to set the data and program at particular
addresses, allocate space in memory for variables, allocate space in memory and initialize
constants, define synonyms, or include additional files.

Asm430 (TI CCStudio MSP430 assembler) has predefined sections into which various parts of a
program are assembled. Uninitialized data is assembled into the .bss section, initialized data
into the .data section, and executable code into the .text section. A430 (IAR MSP430 assembler)
also uses sections or segments, but there are no predefined segment names. However, it is
convenient to adhere to the names used by C compiler: DATA_16_Z for uninitialized data,
CONST for constant (initialized) data, and CODE for executable code. Table 1 lists main sections
and section directives used by ASM430 (TI’s CCS assembler) and A430 (IAR assembler).

Table 1. Sections and section directives in ASM430 and A430.

Description ASM430 (CCS) A430 (IAR)

Reserve size bytes in the uninitialized sect. .bss -

Assemble into the initialized data section .data RSEG const

Assemble into a named initialized data section .sect RSEG

Assemble into the executable code .text RSEG code

Reserve space in a named (uninitialized) section .usect -

Align on byte boundary .align 1 -

Align on word boundary .align 2 EVEN

Table 2 describes most frequently used assembly language directives for defining constants.
The constants can be placed in either the .text section which resides in the Flash memory and
then they cannot be changed or in the .data section that is in RAM memory and the data can be
programmatically changed.

Table 2. Constant Initialization Directives

Description ASM430 (CCS) A430 (IAR)

Initialize one or more successive bytes or text strings .byte or .string DB/DC8

Initialize 32-bit IEEE floating-point .float DF

Initialize a variable-length field .field -

Reserve size bytes in the current location .space DS/DS8

Initialize one or more 16-bit integers .word DW/DC16

Initialize one or more 32-bit integers .long DL/DC32

CPE 323 MSP430 Assembly © A. Milenković 5

The example below shows assembly language directives for allocating space in RAM memory
for two variables in RAM memory using A430 (IAR) and ASM430 (CCS).

Example #1:
; IAR
 RSEG DAT16_N ; switch to DATA segment
 EVEN ; make sure it starts at even address
MyWord: DS 2 ; allocate 2 bytes / 1 word
MyByte: DS 1 ; allocate 1 byte

; CCS Assembler (Example #1)
MyWord: .usect “.bss”, 2, 2 ; allocate 1 word
MyByte: .usect “.bss”, 1 ; allocate 1 byte

; CCS Assembler (Example #2)
 .bss MyWord,2,2 ; allocate 1 word
 .bss MyByte,1 ; allocate 1 byte

Example #2: Figure 2 shows a sequence of assembly language directives that populate Flash
memory with 8-bit constants (.byte directive), 16-bit constants (.word directive), and 32-bit
constants (.long directive). We can specify decimal constants (number without any prefix or
suffix), binary numbers (suffix b), octal numbers (suffix q), and hexadecimal numbers (suffix h or
prefix 0x). ASCII characters are specified using single quotes, whereas a string under double
quotes is a series of ASCII characters. Two single quotes in line 21 represent a NULL character
added at the end of the string “ABCD”. Figure 3 illustrates the content of the flash memory
after these directives are carried out. Please note that assembler decided to place these
constants in the Flash memory starting at the address 0x3100. As a result of parsing this
sequence, the assembler creates a table of symbols (synonyms) shown in Figure 4.

;-- 1
; define data section with constants 2
 3
b1: .byte 5 ; allocates a byte in memory and initialize it with 5 4
b2: .byte -122 ; allocates a byte with constant -122 5
b3: .byte 10110111b ; binary value of a constant 6
b4: .byte 0xA0 ; hexadecimal value of a constant 7
b5: .byte 123q ; octal value of a constant 8
tf: .equ 25 9
 .align 2 ; move a location pointer to the first even address 10
w1: .word 21 ; allocates a word constant in memory; 11
w2: .word -21 12
w3: .word tf 13
dw1: .long 100000 ; allocates a long word size constant in memory; 14
 ; 100000 (0x0001_86A0) 15
dw2: .long 0xFFFFFFEA 16
 .align 2 17
s1: .byte 'A', 'B', 'C', 'D' ; allocates 4 bytes in memory with string ABCD 18
s2: .byte "ABCD", '' ; allocates 5 bytes in memory with string ABCD + NULL19

Figure 2. Assembly Language Directives: An Example.

CPE 323 MSP430 Assembly © A. Milenković 6

Label Address Memory[15:8] Memory[7:0]

b1 0x3100 0x86 0x05

b3 0x3102 0xA0 0xB7

b5 0x3104 -- 0x51

w1 0x3106 0x00 0x15

w2 0x3108 0xFF 0xEB

w3 0x310A 0x00 0x19

dw1 0x310C 0x86 0xA0

 0x310E 0x00 0x01

dw2 0x3110 0xFF 0xEA

 0x3112 0xFF 0xFF

s1 0x3114 0x42 0x41

 0x3116 0x44 0x43

s2 0x3118 0x42 0x41

 0x311A 0x44 0x43

 0x311C -- 0x00

Figure 3. Memory content (a word-view).

Symbol Value [hex]

b1 0x3100

b2 0x3101

b3 0x3102

b4 0x3103

b5 0x3104

tf 0x0019

w1 0x3106

w2 0x3108

w3 0x310A

dw1 0x310C

dw2 0x3110

s1 0x3114

s2 0x3118

Figure 4. Table of symbols (maintained by assembler).

CPE 323 MSP430 Assembly © A. Milenković 7

To allocate space in RAM memory we use directives as shown below. Figure 5 shows a
sequence of directives for allocating space in memory. Figure 6 shows the content of the RAM
after allocation (it is not initialized) and Figure 7 shows the table of symbols created by the
assembler upon parsing these directives. Note #1. Assembler placed allocated space at the
address of 0x1100, which belongs to RAM memory for the MSP430FG4618. Note #2: RAM
memory is built out of SRAM cells; upon powering chip up these cells take a state of either logic
1 or logic 0 in a random fashion, but for us the memory cells do not have meaningful content,
so we consider them uninitialized.

 .bss v1b,1,1 ; allocates a byte in memory, equivalent to DS 1 1
 .bss v2b,1,1 ; allocates a byte in memory 2
 .bss v3w,2,2 ; allocates a word of 2 bytes in memory 3
 .bss v4b,8,2 ; allocates a buffer of 8 bytes 4
 .bss vx,5

Figure 5. Assembly Language Directives: An Example.

Label Address Memory[15:8] Memory[7:0]

v1b 0x1100 -- --

v3w 0x1102 -- --

v4b 0x1104 -- --

 0x1106 -- --

 0x1108 -- --

 0x110A -- --

 0x110C

Figure 6. Memory content (a word-view).

Symbol Value [hex]

v1b 0x1100

v2b 0x1101

v3w 0x1102

v4b 0x1104

vx 0x110C

Figure 7. Table of symbols (maintained by assembler).

CPE 323 MSP430 Assembly © A. Milenković 8

3 Decimal and Integer Addition of 32-bit Integers
In this section we will consider an assembly program that sums up two 32-bit integers (lint1,
and lint2) producing two 32-bit results, one assuming these integers represent regular binary
coded 32-bit integers (lsumi) and one assuming these integers represent packed binary coded
decimal numbers (BCD). The assembler will place these directives at the first address that
belong to the Flash memory (0x3100 in case for MSP430FG4618). Thus, lint1 is at 0x3100 and
lint2 is at 0x3104 and that they are initialized as shown in Figure 8 (lines 27 and 28). The output
variables are allocated in RAM (we cannot write into the Flash memory) at the starting address
of RAM which is 0x1100 (lsumd) and 0x1104 (lsumi). As MSP430 performs only operations on 8-
bit bytes and 16-bit words, to find decimal and binary sums in this example, we will need to
perform the requested operations in two rounds – one to sum up lower words and one to sum
up upper words of input variables. First, lower 16-bit of lint1 (address with label lint1) is loaded
into register R8 (line 40). Please note the source operand is specified using the symbolic
addressing mode, thus R8<=M[lint1]. Next, decimal addition DADD.W instruction is used to add
the lower 16-bit of lint2 to R8, R8<=R8+M[lint2]+C (line 41). Note: DADD instruction performs
the following operation: src+dst+C => dst (decimally). Now register R8 contains the lower 16-bit
of the decimal sum and it is moved to lsumd, M[lsumd]<=R8 (line 42). In the next round, we
reach to upper 16-bit of lint1 residing at lint1+2, as well as upper 16-bit of lint2 and store the
result to lsumd+2. Please note that the DADD.W instruction in line 41 produces a carry bit that
needs to be used by the DADD.W instruction in line 44 to have correct sum. Luckily, we have
two move instructions in between that do not affect the carry flag between lines 41 and 44, so
the carry bit produced in line 41 is used by DADD.W in line 44. Consequently, to make this code
work properly, we clear carry flag before we start computation (line 39).

A similar sequence of steps is performed for binary addition. Here, we use ADD.W instruction in
the first round and ADDC.W instruction in the second round instead DADD.W instructions. Also,
note that carry generated by the ADD.W instruction in line 47 is used by the ADDC in line 50.

;-- 1
; File : LongIntAddition.asm 2
; Function : Sums up two long integers represented in binary and BCD 3
; Description: Program demonstrates addition of two operands lint1 and lint2. 4
; Operands are first interpreted as 32-bit decimal numbers and 5
; and their sum is stored into lsumd; 6
; Next, the operands are interpreted as 32-bit signed integers 7
; in two's complement and their sum is stored into lsumi. 8
; Input : Input integers are lint1 and lint2 (constants in flash) 9
; Output : Results are stored in lsumd (decimal sum) and lsumi (int sum) 10
; Author : A. Milenkovic, milenkovic@computer.org 11
; Date : August 24, 2018 12
;--- 13
 .cdecls C,LIST,"msp430.h" ; Include device header file 14
 15
;--- 16
 .def RESET ; Export program entry-point to 17
 ; make it known to linker. 18
;--- 19
 .text ; Assemble into program memory. 20

CPE 323 MSP430 Assembly © A. Milenković 9

 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
;--- 25
;--- 26
lint1: .long 0x45678923 27
lint2: .long 0x23456789 28
;--- 29
;--- 30
lsumd: .usect ".bss", 4,2 ; allocate 4 bytes for decimal result 31
lsumi: .usect ".bss", 4,2 ; allocate 4 bytes for integer result 32
;--- 33
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 34
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 35
;--- 36
; Main code here 37
;--- 38
 clr.w R2 ; clear status register 39
 mov.w lint1, R8 ; get lower 16 bits from lint1 to R8 40
 dadd.w lint2, R8 ; decimal addition, R8 + lower 16-bit of lint2 41
 mov.w R8, lsumd ; store the result (lower 16-bit) 42
 mov.w lint1+2, R8 ; get upper 16 bits of lint1 to R8 43
 dadd.w lint2+2, R8 ; decimal addition 44
 mov.w R8, lsumd+2 ; store the result (upper 16-bit) 45
 mov.w lint1, R8 ; get lower 16 bite from lint1 to R8 46
 add.w lint2, R8 ; integer addition 47
 mov.w R8, lsumi ; store the result (lower 16 bits) 48
 mov.w lint1+2, R8 ; get upper 16 bits from lint1 to R8 49
 addc.w lint2+2, R8 ; add upper words, plus carry 50
 mov.w R8, lsumi+2 ; store upper 16 bits of the result 51
 52
 jmp $; jump to current location '$' 53
 ; (endless loop) 54
 55
 56
;--- 57
; Stack Pointer definition 58
;--- 59
 .global __STACK_END 60
 .sect .stack 61
 62
;--- 63
; Interrupt Vectors 64
;--- 65
 .sect ".reset" ; MSP430 RESET Vector 66
 .short RESET 67
 68
 69

Figure 8. Decimal and integer addition (first implementation).

Figure 9 shows a program ready to run with all necessary directives and an alternative
implementation from the one shown in Figure 8. First, let us describe how the program
execution starts. Upon powering up, so-called PUC (power-up clear) signal in hardware is
generated. The first thing MSP430 does is to fetch a word from location 0xFFFE (the top word
address in the 64 KB address space). This location is known as reset interrupt vector. Note: the
top 32 words of the 64KB address space are reserved for the interrupt vector table (IVT) and
the top most address is reserved for the reset vector, which is the highest priority interrupt

CPE 323 MSP430 Assembly © A. Milenković 10

request in MSP430. The content of this location is moved into Program Counter
(PC <= M[0xFFFE]). Thus, note that our entry point in the program (address of the first
instruction) has label RESET (line 37). The value of the symbol RESET is used to initialize the
reset vector in the interrupt vector table (lines 82 and 83).

;-- 1
; File : LongIntAdditionv2.asm 2
; Function : Sums up two long integers represented in binary and BCD 3
; Description: Program demonstrates addition of two operands lint1 and lint2. 4
; Operands are first interpreted as 32-bit decimal numbers and 5
; and their sum is stored into lsumd; 6
; Next, the operands are interpreted as 32-bit signed integers 7
; in two's complement and their sum is stored into lsumi. 8
; This version uses loops. 9
; Input : Input integers are lint1 and lint2 (constants in flash) 10
; Output : Results are stored in lsumd (decimal sum) and lsumi (int sum) 11
; Written by : A. Milenkovic, milenkovic@computer.org 12
; Date : August 24, 2018 13
;--- 14
 .cdecls C,LIST,"msp430.h" ; Include device header file 15
 16
;--- 17
 .def RESET ; Export program entry-point to 18
 ; make it known to linker. 19
;--- 20
 .text ; Assemble into program memory. 21
 .retain ; Override ELF conditional linking 22
 ; and retain current section. 23
 .retainrefs ; And retain any sections that have 24
 ; references to current section. 25
 26
;--- 27
;--- 28
lint1: .long 0x45678923 29
lint2: .long 0x23456789 30
;--- 31
;--- 32
lsumd: .usect ".bss", 4,2 ; allocate 4 bytes for decimal result 33
lsumi: .usect ".bss", 4,2 ; allocate 4 bytes for integer result 34
;--- 35
 36
RESET: mov.w #__STACK_END,SP ; Initialize stackpointer 37
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 38
 39
;--- 40
; Main loop here 41
;--- 42
; Decimal addition 43
 mov.w #lint1, R4 ; pointer to lint1 44
 mov.w #lsumd, R8 ; pointer to lsumd 45
 mov.w #2, R5 ; R5 is a counter (32-bit=2x16-bit) 46
 clr.w R10 ; clear R10 47
lda: mov.w 4(R4), R7 ; load lint2 48
 mov.w R10, R2 ; load original SR 49

CPE 323 MSP430 Assembly © A. Milenković 11

 dadd.w @R4+, R7 ; decimal add lint1 (with carry) 50
 mov.w R2, R10 ; backup R2 in R10 51
 mov.w R7, 0(R8) ; store result (@R8+0) 52
 add.w #2, R8 ; update R8 53
 dec.w R5 ; decrement R5 54
 jnz lda ; jump if not zero to lda 55
; Integer addition 56
 mov.w #lint1, R4 ; pointer to lint1 57
 mov.w #lsumi, R8 ; pointer to lsumi 58
 mov.w #2, R5 ; R5 is a counter (32-bit=2x16-bit) 59
 clr.w R10 ; clear R10 60
lia: mov.w 4(R4), R7 ; load lint2 61
 mov.w R10, R2 ; load original SR 62
 addc.w @R4+, R7 ; decimal add lint1 (with carry) 63
 mov.w R2, R10 ; backup R2 in R10 64
 mov.w R7, 0(R8) ; store result (@R8+0) 65
 add.w #2, R8 ; update R8 66
 dec.w R5 ; decrement R5 67
 jnz lia ; jump if not zero to lia 68
 69
 jmp $; jump to current location '$' 70
 ; (endless loop) 71
 72
;--- 73
; Stack Pointer definition 74
;--- 75
 .global __STACK_END 76
 .sect .stack 77
 78
;--- 79
; Interrupt Vectors 80
;--- 81
 .sect ".reset" ; MSP430 RESET Vector 82
 .short RESET 83
 84

Figure 9. Decimal and integer 32-bit addition.

4 Counting Characters ‘E’ in a String
This section defines the problem that will be solved by the Count Characters program using the
MSP430 assembly language. Our task is to develop an assembly program that will scan a given
string of characters, for example, “HELLO WORLD, I AM THE MSP430!”, and find the
number of appearances of the character ‘E’ in the string. A counter that records the number of
characters ‘E’ is then written to the parallel port P1. The port should be configured as an output
port, and the binary value of the port will correspond to the counter value.

To solve this assignment, let us first analyze the problem statement. Your task is to write an
assembly program that will count the number of characters ‘E’ in a string. First, the problem
implies that we need to allocate space in memory that will keep the string “HELLO WORLD, I
AM THE MSP430!”. The string has 29 characters and they are encoded using the ASCII table.
To allocate and initialize a string in memory we can use an assembly language directive, .byte or

CPE 323 MSP430 Assembly © A. Milenković 12

.string: .string "HELLO WORLD, I AM THE MSP430!". We can also put a label to
mark the beginning of this string in memory, for example, mystr: mystr .string "HELLO
WORLD, I AM THE MSP430!".

When assembler sees the .string directive, it will allocate the space in memory required for the
string that follows and initialize the allocated space with corresponding ASCII characters. We
will also specify an additional NULL ASCII character to terminate the string
(ascii(NULL)=0x00). So, the total number of bytes occupied by this string terminated by the
NULL character is 30.
Our task is now to write a program that will scan the string, character by character, check
whether the current character is equal to the character ‘E’, and if yes, increment a counter. The
string scan is done in a program loop. The program ends when we reach the end of the string,
which is detected when the current character is equal to the NULL character (0x00).
To scan the string we will use a register to point to the current character in the string. This
pointer register is initialized at the beginning of the program to point to the first character in
the string. The pointer will be incremented in each iteration of the program loop. Another
register, initialized to zero at the beginning, will serve as the counter, and it is incremented
every time the current character is ‘E’.
After we exit the program loop, the current value of the counter will be written to the port P1,
which should be initialized as an output port.
Note: It is required that you are familiar with the MSP430 instruction set and addressing modes
to be able to solve this problem. Also, we will assume that the string is no longer than 255
characters, so the result can be displayed on an 8-bit port.

4.1 Count Characters Assembly Code

Figure 10 shows the assembly code for this program. Here is a short description of the assembly
code.
The comments in a single line start with a column character (;).
Line 11, .cdecls C,LIST,"msp430.h", is a C-style pre-processor directive that specifies a header
file to be included in the source code. The header file includes all macro definitions, for
example, special function register addresses (WDTCTL), and control bits (WDTPW+WDTHOLD).

Next, in line 17 we allocate the string myStr using .string directive: myStr .string "HELLO
WORLD, I AM THE MSP430!", ''. As explained above, this directive will allocate 30 bytes in
memory starting at the address 0x3100 and initialize it with the string content, placing the ASCII
codes for the string characters in the memory. The hexadecimal content in memory will be as
follows: 48 45 4c 4c 4f 20 57 4f 52 4c 44 2c 20 49 20 41 4d 20 54 48 45 20 4d 53 50 34 33 30 21
00 (ascii(‘H’)=0x48, ascii(‘H’)=0x45, … ascii(‘!’)=0x21, ascii(NULL)=x00).

.text is a section control assembler directive that controls how code and data are located in
memory. .text is used to mark the beginning of a relocatable code or data segment. This
directive is resolved by the linker.

CPE 323 MSP430 Assembly © A. Milenković 13

The first instruction in line 26 initializes the stack pointer register (mov.w #__STACK_END,SP). Our
program does not use the stack, so we could have omitted lines 51 and 52 that define the stack
section as well as this instruction.
The instruction mov.w #WDTPW|WDTHOLD,&WDTCTL sets certain control bits of the watchdog timer
control register (WDTCTL) to disable it. The watchdog timer by default is active upon reset,
generating interrupt requests periodically. As this functionality is not needed in our program,
we simply need to disable it.

Parallel ports in the MSP430 microcontroller can be configured as either input or output ports.
A control register PxDIR determines whether the port x is an input or an output port (we can
configure each individual port pin). Our program drives all eight pins of the port P1, so it should
be configured as an output port by setting each individual pin to 1 (P1DIR=0xFF). Register R4 is
loaded to point to the first character in the string. Register R5, the counter, is cleared before
starting the main program loop.

The main loop starts at the next label. We use the autoincrement addressing mode to read a
new character (one byte) from the string (mov.b @R4+, R6). The current character is kept in
register R6. We then compare the current character with the NULL character (cmp.b #0,R6). If
it is the NULL character, the end of the string has been reached and we exit the loop (JEQ lend).
Pay attention that we used JEQ instruction? Why is this instruction used? Which flag is
inspected?
If it is not the end of the string, we compare the current character with ‘E’. If there is no match
we go back to the first instruction in the loop. Otherwise, we increase the value of the counter
(register R5). Finally, once the end of the string has been reached, we move the lower byte
from R5 to the parallel port 1, P1OUT=R5[7:0].

;--- 1
; File : Lab4_D1.asm (CPE 325 Lab4 Demo code) 2
; Function : Counts the number of characters E in a given string 3
; Description: Program traverses an input array of characters 4
; to detect a character 'E'; exits when a NULL is detected 5
; Input : The input string is specified in myStr 6
; Output : The port P1OUT displays the number of E's in the string 7
; Author : A. Milenkovic, milenkovic@computer.org 8
; Date : August 14, 2008 9
;--- 10
 .cdecls C,LIST,"msp430.h" ; Include device header file 11
 12
;--- 13
 .def RESET ; Export program entry-point to 14
 ; make it known to linker. 15
 16
myStr: .string "HELLO WORLD, I AM THE MSP430!", '' 17
;--- 18
 .text ; Assemble into program memory. 19
 .retain ; Override ELF conditional linking 20
 ; and retain current section. 21
 .retainrefs ; And retain any sections that have 22
 ; references to current section. 23
 24
;--- 25

CPE 323 MSP430 Assembly © A. Milenković 14

RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 26
 mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29
; Main loop here 30
;--- 31
main: bis.b #0FFh,&P1DIR ; configure P1.x output 32
 mov.w #myStr, R4 ; load the starting address of the string into R4 33
 clr.b R5 ; register R5 will serve as a counter 34
gnext: mov.b @R4+, R6 ; get a new character 35
 cmp #0,R6 ; is it a null character 36
 jeq lend ; if yes, go to the end 37
 cmp.b #'E',R6 ; is it an 'E' character 38
 jne gnext ; if not, go to the next 39
 inc.w R5 ; if yes, increment counter 40
 jmp gnext ; go to the next character 41
 42
lend: mov.b R5,&P1OUT ; set all P1 pins (output) 43
 bis.w #LPM4,SR ; LPM4 44
 nop ; required only for Debugger 45
 46
 47
;--- 48
; Stack Pointer definition 49
;--- 50
 .global __STACK_END 51
 .sect .stack 52
 53
;--- 54
; Interrupt Vectors 55
;--- 56
 .sect ".reset" ; MSP430 RESET Vector 57
 .short RESET 58
 .end 59
Figure 10. MSP430 Assembly Code for Count Character Program.

5 Subroutines
In a given program, it is often needed to perform a particular sub-task many times on different
data values. Such a subtask is usually called a subroutine. For example, a subroutine may sort
numbers in an integer array or perform a complex mathematical operation on an input variable
(e.g., calculate sin(x)). It should be noted, that the block of instructions that constitute a
subroutine can be included at every point in the main program when that task is needed.
However, this would be an unnecessary waste of memory space. Rather, only one copy of the
instructions that constitute the subroutine is placed in memory and any program that requires
the use of the subroutine simply branches to its starting location in memory. The instruction
that performs this branch is named a CALL instruction. The calling program is called CALLER and
the subroutine invoked is called CALLEE.

The instruction that is executed right after the CALL instruction is the first instruction of the
subroutine. The last instruction in the subroutine is a return instruction (ret), and we say that
the subroutine returns to the program that called it. Since a subroutine can be called from
different places in a calling program, we must have a mechanism to return to the appropriate

CPE 323 MSP430 Assembly © A. Milenković 15

location (the first instruction that follows the CALL instruction in the calling program). At the
time of executing a CALL instruction we know the program location of the instruction that
follows the CALL (the program counter or PC is pointing to the next instruction). Hence, we
should save the return address at the time the CALL instruction is executed. The way in which a
machine makes it possible to call and return from subroutines is referred to as its subroutine
linkage method.

The simplest subroutine linkage method is to save the return address in a specific location. This
location may be a register dedicated to this function, often referred to as the link register.
When the subroutine completes its task, the return instruction returns to the calling program
by branching indirectly through the link register.
The CALL instruction is a special branch instruction and performs the following operations:

 Store the content of the PC in the link register;

 Branch to the target address specified by the instruction.
The RETURN instruction is a special branch instruction that performs the following operations:

 Branch to the address contained in the link register.

5.1 Subroutine Nesting

A common programming practice, called subroutine nesting, is to have one subroutine call
another. In this case, the return address of the second call is also stored in the link register
destroying the previous contents. Hence, it is essential to save the contents of the link register
in some other location before calling another subroutine. Subroutine nesting can be carried out
to any depth. For example, imagine the following sequence: subroutine A calls subroutine B,
subroutine B calls subroutine C, and finally subroutine C calls subroutine D. In this case, the last
subroutine D completes its computations and returns to the subroutine C that called it. Next, C
completes its execution and returns to the subroutine B that called it and so on. The sequence
of returns is as follows: D returns to C, C returns to B, and B returns to A. That is, the return
addresses are generated and used in the last-in-first-out order. This suggests that the return
addresses associated with subroutine calls should be pushed onto a stack. Many processors do
this automatically. A particular register is designated as the stack pointer, or SP, that is implicitly
used in this operation. The stack pointer points to a stack called the processor stack.
The CALL instruction is a special branch instruction and performs the following operations:

 Push the content of the PC onto the top of the stack

 Update the stack pointer (SP  SP – 2)

 Branch to the target address specified by the instruction
The RET instruction is a special branch instruction that performs the following operations:

 Pop the return address from the top of the stack into the PC

 Update the stack pointer (SP  SP + 2).

5.2 Parameter Passing

When calling a subroutine, a calling program needs a mechanism to provide to the subroutine
the input parameters, the operands that will be used in computation in the subroutine or their
addresses. Later, the subroutine needs a mechanism to return output parameters, the results

CPE 323 MSP430 Assembly © A. Milenković 16

of the subroutine computation. This exchange of information between a calling program and a
subroutine is referred to as parameter passing. Parameter passing may be accomplished in
several ways. The parameters can be placed in registers or in memory locations, where they can
be accessed by subroutine. Alternatively, the parameters may be placed on a processor stack.

Let us consider the following program shown in Figure 11. We have two integer arrays arr1 and
arr2. The program finds the sum of the integers in arr1 and displays the result on the ports P1
and P2, and then finds the sum of the integers in arr2 and displays the result on the ports P3
and P4. It is obvious that we can have a single subroutine that will perform this operation and
thus make our code more readable and reusable. The subroutine needs to get three input
parameters: what is the starting address of the input array, how many elements the array has,
and where to display the result. In this example, the subroutine does not return any output
parameter to the calling program.

Let us first consider the main program (Figure 12) and the corresponding subroutine (suma_rp,
Figure 13) if we pass the parameters through registers. Passing parameters through registers is
straightforward and efficient. Three input parameters are placed in registers as follows: R12
keeps the starting address of the input array, R13 keeps the array length, and R14 defines the
display identification (#0 for P1&P2 and #1 for P3&P4). The calling program places the
parameters in these registers, and then calls the subroutine using CALL #suma_rp instruction.
The subroutine uses the R7 register to hold the sum of the integers in the array. The register R7
may contain valid data that belongs to the calling program, so our first step should be to push
the content of the R7 register onto the stack. The last instruction before the return from the
subroutine is to restore the original content of R7. Generally, it is a good practice to save all
general-purpose registers used as temporary storage in the subroutine as the first thing in the
subroutine, and to restore their original contents (the contents pushed on the stack at the
beginning of the subroutine) just before returning from the subroutine. This way, the calling
program will find the original contents of the registers as they were before executing the CALL
instruction. Other registers that our subroutine uses are R12, R13, and R14. These registers
keep parameters, so we assume we can modify them (they do not need to preserve their
original value once we are back in the calling program).

;--- 1
; File : Lab5_D1.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays 3
; Description: The program initializes ports, 4
; sums up elements of two integer arrays and 5
; display sums on parallel ports 6
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 7
; Output : P1OUT&P2OU displays sum of arr1, P3OUT&P4OUT displays sum of arr2 8
; Author : A. Milenkovic, milenkovic@computer.org 9
; Date : September 14, 2008 10
;--- 11
 .cdecls C,LIST,"msp430.h" ; Include device header file 12
 13
;--- 14
 .def RESET ; Export program entry-point to 15
 ; make it known to linker. 16

CPE 323 MSP430 Assembly © A. Milenković 17

;--- 17
 .text ; Assemble into program memory. 18
 .retain ; Override ELF conditional linking 19
 ; and retain current section. 20
 .retainrefs ; And retain any sections that have 21
 ; references to current section. 22
 23
;--- 24
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 25
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 26
 27
;--- 28
; Main code here 29
;--- 30
main: bis.b #0xFF,&P1DIR ; configure P1.x as output 31
 bis.b #0xFF,&P2DIR ; configure P2.x as output 32
 bis.b #0xFF,&P3DIR ; configure P3.x as output 33
 bis.b #0xFF,&P4DIR ; configure P4.x as output 34
 ; load the starting address of the array1 into the register R4 35
 mov.w #arr1, R4 36
 ; load the starting address of the array1 into the register R4 37
 mov.w #arr2, R5 38
 ; Sum arr1 and display 39
 clr.w R7 ; Holds the sum 40
 mov.w #8, R10 ; number of elements in arr1 41
lnext1: add.w @R4+, R7 ; get next element 42
 dec.w R10 43
 jnz lnext1 44
 mov.b R7, P1OUT ; display sum of arr1 45
 swpb R7 46
 mov.b R7, P2OUT 47
 ; Sum arr2 and display 48
 clr.w R7 ; Holds the sum 49
 mov.w #7, R10 ; number of elements in arr2 50
lnext2: add.w @R5+, R7 ; get next element 51
 dec.w R10 52
 jnz lnext2 53
 mov.b R7, P3OUT ; display sum of arr1 54
 swpb R7 55
 mov.b R7, P4OUT 56
 jmp $ 57
 58
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 59
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 60
 61
 62
;--- 63
; Stack Pointer definition 64
;--- 65
 .global __STACK_END 66
 .sect .stack 67
 68
;--- 69
; Interrupt Vectors 70
;--- 71
 .sect ".reset" ; MSP430 RESET Vector 72
 .short RESET 73
 .end 74

Figure 11. Assembly program for summing up two integer arrays.

CPE 323 MSP430 Assembly © A. Milenković 18

;--- 1
; File : Lab5_D2_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using subroutines 3
; Description: The program initializes ports and 4
; calls suma_rp to sum up elements of integer arrays and 5
; display sums on parallel ports. 6
; Parameters to suma_rp are passed through registers, R12, R13, R14. 7
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 8
; Output : P1OUT&P2OU displays sum of arr1, P3OUT&P4OUT displays sum of arr2 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;--- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
;--- 15
 .def RESET ; Export program entry-point to 16
 ; make it known to linker. 17
 .ref suma_rp 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
 25
;--- 26
RESET: mov.w #__STACK_END,SP ; Initialize stackpointer 27
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 28
 29
;--- 30
; Main code here 31
;--- 32
main: bis.b #0xFF,&P1DIR ; configure P1.x as output 33
 bis.b #0xFF,&P2DIR ; configure P2.x as output 34
 bis.b #0xFF,&P3DIR ; configure P3.x as output 35
 bis.b #0xFF,&P4DIR ; configure P4.x as output 36
 37
 mov.w #arr1, R12 ; put address into R12 38
 mov.w #8, R13 ; put array length into R13 39
 mov.w #0, R14 ; display #0 (P1&P2) 40
 call #suma_rp 41
 42
 mov.w #arr2, R12 ; put address into R12 43
 mov.w #7, R13 ; put array length into R13 44
 mov.w #1, R14 ; display #0 (P3&P4) 45
 call #suma_rp 46
 jmp $ 47
 48
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 49
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 50
 51
;--- 52
; Stack Pointer definition 53
;--- 54
 .global __STACK_END 55
 .sect .stack 56
 57
;--- 58
; Interrupt Vectors 59
;--- 60

CPE 323 MSP430 Assembly © A. Milenković 19

 .sect ".reset" ; MSP430 RESET Vector 61
 .short RESET 62
 .end 63
Figure 12. Main assembly program for summing up two integer arrays using a subroutine suma_rp.

;--- 1
; File : Lab5_D2_RP.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_rp is a subroutine that sums elements of an integer array 4
; Input : The input parameters are: 5
; R12 -- array starting address 6
; R13 -- the number of elements (>= 1) 7
; R14 -- display ID (0 for P1&P2 and 1 for P3&P4) 8
; Output : No output 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;-- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
 .def suma_rp 15
 16
 .text 17
 18
suma_rp: 19
 push.w R7 ; save the register R7 on the stack 20
 clr.w R7 ; clear register R7 (keeps the sum) 21
lnext: add.w @R12+, R7 ; add a new element 22
 dec.w R13 ; decrement step counter 23
 jnz lnext ; jump if not finished 24
 bit.w #1, R14 ; test display ID 25
 jnz lp34 ; jump on lp34 if display ID=1 26
 mov.b R7, P1OUT ; display lower 8-bits of the sum on P1OUT 27
 swpb R7 ; swap bytes 28
 mov.b R7, P2OUT ; display upper 8-bits of the sum on P2OUT 29
 jmp lend ; skip to end 30
lp34: mov.b R7, P3OUT ; display lower 8-bits of the sum on P3OUT 31
 swpb R7 ; swap bytes 32
 mov.b R7, P4OUT ; display upper 8-bits of the sum on P4OUT 33
lend: pop R7 ; restore R7 34
 ret ; return from subroutine 35
 36
 .end 37
Figure 13. Subroutine for summing up an integer array (suma_rp).

If many parameters are passed, there may not be enough general-purpose register available for
passing parameters into the subroutine. In this case we use the stack to pass parameters.
Figure 14 shows the calling program and Figure 15 shows the subroutine. Before calling the
subroutine we place parameters on the stack using PUSH instructions (the array starting
address, array length, and display id – each parameter is 2 bytes long). The CALL instruction
pushes the return address on the stack. The subroutine then stores the contents of the
registers R7, R6, and R4 on the stack (another 6 bytes) to save their original content. The next
step is to retrieve input parameters (array starting address and array length). They are on the
stack, but to know exactly where, we need to know the current state of the stack and its
organization (how does it grow, and where does SP point to). The total distance between the
top of the stack and the location on the stack where we placed the starting address is 12 bytes.

CPE 323 MSP430 Assembly © A. Milenković 20

So the instruction mov.w 12(SP), R4 loads the register R4 with the first parameter (the array
starting address). Similarly, the array length can be retrieved by mov.w 10(SP), R6. The register
values are restored before returning from the subroutine (notice the reverse order of POP
instructions). Once we are back in the calling program, we can free 6 bytes on the stack used to
pass parameters.

;--- 1
; File : Lab5_D3_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using a subroutine suma_sp 3
; Description: The program initializes ports and 4
; calls suma_rp to sum up elements of integer arrays and 5
; display sums on parallel ports. 6
; Parameters to suma_sp are passed through the stack. 7
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 8
; Output : P1OUT&P2OU displays sum of arr1, P3OUT&P4OUT displays sum of arr2 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;--- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
;--- 15
 .def RESET ; Export program entry-point to 16
 ; make it known to linker. 17
 .ref suma_sp 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
;--- 25
RESET: mov.w #__STACK_END,SP ; Initialize stackpointer 26
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29
; Main code here 30
;--- 31
main: bis.b #0xFF,&P1DIR ; configure P1.x as output 32
 bis.b #0xFF,&P2DIR ; configure P2.x as output 33
 bis.b #0xFF,&P3DIR ; configure P3.x as output 34
 bis.b #0xFF,&P4DIR ; configure P4.x as output 35
 36
 push #arr1 ; push the address of arr1 37
 push #8 ; push the number of elements 38
 push #0 ; push display id 39
 call #suma_sp 40
 add.w #6,SP ; collapse the stack 41
 push #arr2 ; push the address of arr1 42
 push #7 ; push the number of elements 43
 push #1 ; push display id 44
 call #suma_sp 45
 add.w #6,SP ; collapse the stack 46
 47
 jmp $ 48
 49
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 50
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 51
 52
;--- 53

CPE 323 MSP430 Assembly © A. Milenković 21

; Stack Pointer definition 54
;--- 55
 .global __STACK_END 56
 .sect .stack 57
 58
;--- 59
; Interrupt Vectors 60
;--- 61
 .sect ".reset" ; MSP430 RESET Vector 62
 .short RESET 63
 .end 64
Figure 14 . Main program for summing up two integer arrays using a subroutine suma_sp.
;--- 1
; File : Lab5_D3_SP.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_sp is a subroutine that sums elements of an integer array 4
; Input : The input parameters are on the stack pushed as follows: 5
; starting addrress of the array 6
; array length 7
; display id 8
; Output : No output 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;-- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
 .def suma_sp 15
 16
 .text 17
suma_sp: 18
 ; save the registers on the stack 19
 push R7 ; save R7, temporal sum 20
 push R6 ; save R6, array length 21
 push R4 ; save R5, pointer to array 22
 clr.w R7 ; clear R7 23
 mov.w 10(SP), R6 ; retrieve array length 24
 mov.w 12(SP), R4 ; retrieve starting address 25
lnext: add.w @R4+, R7 ; add next element 26
 dec.w R6 ; decrement array length 27
 jnz lnext ; repeat if not done 28
 mov.w 8(SP), R4 ; get id from the stack 29
 bit.w #1, R4 ; test display id 30
 jnz lp34 ; jump to lp34 display id = 1 31
 mov.b R7, P1OUT ; lower 8 bits of the sum to P1OUT 32
 swpb R7 ; swap bytes 33
 mov.b R7, P2OUT ; upper 8 bits of the sum to P2OUT 34
 jmp lend ; jump to lend 35
lp34: mov.b R7, P3OUT ; lower 8 bits of ths sum to P3OUT 36
 swpb R7 ; swap bytes 37
 mov.b R7, P4OUT ; upper 8 bits of the sum to P4OUT 38
lend: pop R4 ; restore R4 39
 pop R6 ; restore R6 40
 pop R7 ; restore R7 41
 ret ; return 42
 43
 .end 44
Figure 15. Subroutine for summing up an integer array (parameters are passed through the stack).

CPE 323 MSP430 Assembly © A. Milenković 22

6 Allocating Space for Local Variables
Subroutines often need local workspace. So far we have looked at relatively simple subroutines
and managed to develop them by using only a subset of general-purpose registers to keep local
variables. However, what are we going to do if we have arrays and matrices as local variables in
subroutines? Allocating space in RAM memory is an obvious solution, but the question is how
to manage such a space. Assigning a portion of RAM residing at a fixed address is not a good
option. First, it will make our code tied to this particular address – different members of
MSP430 family may have different sizes and placement of RAM memory, so the code may not
be portable. In addition, subroutines may be called recursively, so that multiple instances of
local variables need to be kept separately. Clearly, having a reserved portion of RAM at a fixed
address is not amiable for relocatable, reentrant, and recursive subroutines. The solution is to
use so-called dynamic allocation. Local variables in a subroutine (those that exist during the
lifetime of subroutines) are allocated on the stack once we enter the subroutine and de-
allocated (removed) form the stack before we exit the subroutine.
The storage allocated by a subroutine for local storage is called stack frame. To manage space
on the stack frame we typically use a general purpose register that acts as stack frame pointer.
Let us assume we want to use register R12 as the frame pointer and that we want to allocate
local space for an integer array of 10 elements (20 bytes in MSP430). The first step done in the
subroutine is to push the R12 onto the stack and then redirect R12 to point to the current top
of the stack (where its original copy is kept on the stack). After that, allocating space is simply
moving the stack pointer 20 bytes below the current top of the stack. The following sequence
of instructions performs required operations.

mysub: PUSH R12 ; save R12

 MOVE.W SP, R12 ; R12 points to TOS

 SUB.W #20, SP ; allocate 20 bytes for local storage

This way register R12 can act as an anchor or address register through which we can reach
input variables on the stack (residing on the stack above the anchor) or local variables (residing
on the stack below the anchor in the stack frame). One advantage of this approach is that we
do not have to use SP to reach local variables or input parameters. Using SP to reach input and
local variables requires developers to track distance between the current SP and locations of
interest on the stack, which could be a burden when the stack is growing or shrinking
dynamically inside the subroutine. Register R12 is anchored and does not change its value
during subroutine execution.

Before we exit the subroutine, we need to de-allocate the local stack frame and restore the
original value of R12 as follows.
 MOV.W R12, SP ; free the stack frame

 POP.W R12 ; restore R12

 RET ; retrieve the return address from the stack

To demonstrate practical use of the stack frame we will rewrite the subroutine for summing up
elements of an integer array from Figure 15. This time we assume that the total array sum and
the loop counter are not kept in general-purpose registers, but rather are local variables for the

CPE 323 MSP430 Assembly © A. Milenković 23

subroutine kept on the stack frame. Figure 16 shows the subroutine sum_spsf that expects the
input parameters passed through the stack, but allocates 4 bytes in the stack frame for the total
sum (at the address SFP+4) and the counter (at the address SFP+2).

;--- 1
; File : Lab5_D4_SPSF.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_spsf is a subroutine that sums elements of an integer array. 4
; The subroutine allocates local variables on the stack: 5
; counter (SFP+2) 6
; sum (SFP+4) 7
; Input : The input parameters are on the stack pushed as follows: 8
; starting address of the array 9
; array length 10
; display id 11
; Output : No output 12
; Author : A. Milenkovic, milenkovic@computer.org 13
; Date : September 14, 2008 14
;-- 15
 .cdecls C,LIST,"msp430.h" ; Include device header file 16
 17
 .def suma_spsf 18
 19
 .text 20
suma_spsf: 21
 ; save the registers on the stack 22
 push R12 ; save R12 - R12 is stack frame pointer 23
 mov.w SP, R12 ; R12 points on the bottom of the stack frame 24
 sub.w #4, SP ; allocate 4 bytes for local variables 25
 push R4 ; pointer register 26
 clr.w -4(R12) ; clear sum, sum=0 27
 mov.w 6(R12), -2(R12) ; get array length 28
 mov.w 8(R12), R4 ; R4 points to the array starting address 29
lnext: add.w @R4+, -4(R12) ; add next element 30
 dec.w -2(R12) ; decrement counter 31
 jnz lnext ; repeat if not done 32
 bit.w #1, 4(R12) ; test display id 33
 jnz lp34 ; jump to lp34 if display id = 1 34
 mov.b -4(R12), P1OUT ; lower 8 bits of the sum to P1OUT 35
 mov.b -3(R12), P2OUT ; upper 8 bits of the sume to P2OUT 36
 jmp lend ; skip to lend 37
lp34: mov.b -4(R12), P3OUT ; lower 8 bits of the sum to P3OUT 38
 mov.b -3(R12), P4OUT ; upper 8 bits of the sume to P4OUT 39
lend: pop R4 ; restore R4 40
 add.w #4, SP ; collapse the stack frame 41
 pop R12 ; restore stack frame pointer 42
 ret ; return 43
 .end 44
Figure 16. Subroutine for summing up an integer array that uses local variables sum and counter allocated on
the stack.

CPE 323 MSP430 Assembly © A. Milenković 24

7 To Learn More
1. MSP430 User Manual,

http://www.ece.uah.edu/~milenka/npage/data/cpe323/Documents/slau056j-4xx-UG.pdf
2. Textbook, Chapter 5

http://www.ece.uah.edu/~milenka/npage/data/cpe323/Documents/slau056j-4xx-UG.pdf

