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1 Introduction 
Exception or interrupts are events caused by either hardware or software that require urgent 
response. These events are typically asynchronous to program execution, i.e., they can occur at 
any time during instruction execution. In addition, multiple such events can arise concurrently. 
These events can arise from within a processor – e.g., when trying to execute a non-existing 
instruction (due to corruption of opcode in memory) or when trying to divide by a zero, or from 
outside – e.g., a switch is pressed, a new sample is ready in an ADC, or a communication 
interface is ready to sending a character. The processors handle such events by stopping 
execution of current programs and handling these events in so called interrupt service routines 
(ISRs). Once processing is finished, the processor should continue execution of the interrupted 
program like this departure has never happened. 
 
In embedded systems, exceptions or interrupts are crucial as we are interfacing real-world (e.g., 
sensors and actuators) and the majority of tasks is triggered by external events that are 
asynchronous to programs that are being executed. Exception processing deals with questions 
such as: 

 How does a processor keep track of pending interrupt requests? 

 How does a processor decide which request to accept in presence of multiple pending 
requests? 

 What steps are performed to ensure continuation of program execution once the 
accepted request is handled? 

 How does a processor locate starting addresses of routines that handle interrupt 
requests? 

 How do interrupt service routines look like? 
 
In this section we will look at the exception processing in MSP430 and explain both hardware 
and software aspects on exception processing and how to write interrupt service routines. 

2 Sources of Interrupts 
As mentioned above, interrupts can come from inside the CPU or from input/output 
peripherals. In general, we use interrupts to:  

 Handle urgent tasks that need to be executed at higher priority than the main code.  
For example, we need to activate brakes when a breaking pedal is pressed regardless of 
what the main processor is currently doing, or we need to read a data packet received 
by a communication device before it gets overwritten by another incoming packet.  

 Handle infrequent tasks.  
For example, when scanning input from a keyboard we do not want processor to do the 
scanning because it will be a waste of processor time. We can enter a limited number of 
characters – if you type superfast, perhaps a dozen of characters in a second, whereas 
processors work on much higher speeds executing millions or billions of instructions in a 
second.  
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 Wake the processor up from sleep. Processors may be in sleeping modes (all clocks are 
turned off to conserve energy) and are awaken through interrupts. 

 Call an operating system by invoking interrupts in software. 
 
MSP430 does not have internally-generated interrupts caused by illegal arithmetic operations 
(e.g., division by a zero – actually, there is no divide instruction in MSP430 ISA) or illegal 
opcode. Interrupts are triggered by events coming from peripheral devices – timers after a 
specified period of times has expired, ADC converters when a new sample is ready, 
communication interfaces when they are ready to send a new character or when they received 
a new character, direct-memory-access controllers when they finished a specified transfer, and 
so on. Practically, all peripherals in MSP430 are capable of generating interrupt requests.  

3 Tracking Pending Interrupts and Generating Interrupt Requests 
To track pending interrupt requests, hardware employs so called interrupt tracking bits or flags 
(IFs). These bits are located in either system-wide special-purpose registers, such as IFG1 and 
IFG2, or peripheral-specific control registers. Each event capable of generating an interrupt has 
its own interrupt tracking flag. For example, the MSP430’s Watchdog Timer peripheral has a 
corresponding WDTIFG – Watchdog Timer Interrupt Flag -- that tracks whether a predefined 
period of time has expired. Generally, one peripheral may have multiple interrupt flags that 
may be served by one or multiple interrupt service routines.  
 
Setting an interrupt tracking flag indicates that a certain event in hardware has occurred. 
However, this does not mean that an interrupt request is automatically generated. Each 
interrupt tracking bit or flag has its corresponding Interrupt Enable bit that needs to be set to 
allow an interrupt to become visible to the processor. For example, WDTGIE – Watchdog Timer 
Interrupt Enable bit -- corresponds to the WDTIFG bit. The masking bits are located in system-
wide special-purpose registers, such as IE1 and IE2, or peripheral-specific control registers. In 
addition, the status register SR (R2) includes a so called Global Interrupt Enable bit that allows 
for global masking of all maskable interrupts. Thus, to accept an interrupt from a specific event, 
its corresponding interrupt flag and enable flag have both to be set as well as the GIE bit in the 
status register. The masking bits are generally set by software developers. By selectively 
enabling (setting) or disabling (clearing) masking bits, software developers can fully control 
what hardware events can generate interrupt requests and when they can do so. Similarly, but 
setting/resetting the GIE bits they can globally enable or disable all maskable interrupts. 
 
Figure 1 shows the content of two system-wide registers IFG1 and IFG2. Please notice that BIT0 
of this register is actually WDTIFG that is set when the watchdog timer overflows or when a 
wrong key is written in its control register. The other two flags are related to detecting an 
oscillator fault and whether a RST#/NMI pin is active. While on this figure, please notice rw-0, 
rw-1, rw-(0) markings below each bit. This is a concise way to indicate that these bits can be 
programmatically read from (r), written to (w), and what their initial states upon powering 
MSP430 up are (-0 means they are cleared, -1 means they are set). The notation “-(0)” below 
WDTIFG means that this bit is cleared on Power-On-Reset (hard reset activated when powering 
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up the chip or physical reset), but that it retains its value on Power-Up-Clear (soft reset 
activated when the watchdog timer expires). This notation is used when describing the format 
and initial state of all special-purpose and peripheral-specific registers. Figure 2 illustrates the 
format of the system-wide interrupt enable registers, IE1 and IE2.  An important implication of 
this is that WDTIFG can be set by executing a BIS instruction that set BIT0 to 1. This way, an 
interrupt request is generated from software, rather than from hardware.  
 

Cleared on POR, 
retains its value 
on PUC

Cleared on PUC

 

Figure 1. System-wide Interrupt Flag Registers. 
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Figure 2. System-wide Interrupt Enable Registers. 

 
What happens with interrupt flag bits and how do they get cleared? These bits remain set until 
the processor handles the event by executing the corresponding interrupt service routine. For 
so-called single-sourced interrupts – interrupts that have their own interrupt service routine – 
the interrupt flag bits are cleared in hardware during exception processing. For so-called multi-
source interrupts when multiple hardware events are handled by a single interrupt service 
routine, the responsibility for clearing interrupt flag bits is on software developers who will 
clear flag bits based on how multiple events are handled inside the service routine.  

4 Exception Processing Steps 
Here we will detail the steps taken by the MSP430 processor as a response to a pending 
interrupt request. The following sequence of events is performed: 

1. Any currently executed instruction is completed (this is the other way of saying that 
Exception Processing occurs at the end of an instruction execution). 

2. The PC, which points to the next instruction, is pushed onto the stack. 
3. The SR, status register, is pushed onto the stack. 
4. The interrupt with the highest priority is selected, if multiple interrupts occurred during 

the last instruction and are pending for service. 
5. The interrupt request flag (IF) resets automatically on single-source interrupts. Multiple-

source interrupt flags remain set for servicing by software. 
6. The SR is cleared with the exception of SCG0, which is left unchanged. This terminates 

any low-power mode. Because the GIE bit is cleared, further interrupts are disabled. 
7. The content of the interrupt vector is loaded into the PC: the program continues with 

the interrupt service routine at that address. 
 
This sequence of steps take 6 clock cycles to complete. There are two noteworthy implications 
of these steps. First is that step 6 performs clearing bits in the status register which means that, 
by default, other new or pending interrupts will not be considered while executing instructions 
inside the current service routine. In other words, by default, the nesting of interrupt service 
routines is not possible. However, software developers may opt to explicitly set the GIE bit 
inside the ISR, thus allowing other interrupts to be serviced before completing the servicing of 
this one. Second, if the processor was placed in a sleep mode (that is done by setting specific 
bits in the status register), the exception processing steps triggered by an interrupt are the only 
way to wake the processor up. Thus, to exit a sleep mode, we rely on interrupts. In other words, 
if we go into a sleep mode and do not enable any of the interrupts, we will never exit a low-
power mode.  
 
Upon completion of the exception processing steps, the processor is ready to start executing 
instructions inside the corresponding service routine. Interrupt service routines look like 
subroutines that are written to handle one or more hardware events. They are executed at 
unpredictable times and they should be carried out in such a way to allow the main code to 
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resume execution without any error, like the ISR has never happened. This means that any 
registers used inside the ISR should be backed up on the stack at the beginning of the ISR and 
restored right before exiting the ISR. Interrupt service routines do not have input or output 
parameters, but they can change global variables in memory.  
 
The last machine instruction executed inside an ISR has to be RETI – Return From Interrupt. The 
RETI performs the following operations:  

1. The SR with all previous settings pops from the stack. All previous settings of GIE, 
CPUOFF, etc. are now in effect, regardless of the settings used during the interrupt 
service routine. 

2. The PC pops from the stack and begins execution at the point where it was interrupted. 
The RETI instruction takes 5 clock cycles to execute. 
 
Steps 4 and 7 are further elaborated in the following section.  

5 Interrupt Vector Table and Interrupt Priorities 
How do we find the starting addresses of corresponding interrupt service routines in step 7 of 
the exception processing? The MSP430 maintains a so-called Interrupt Vector Table (IVT) that 
keeps the starting addresses of interrupt service routines. This table is placed at the top of first 
64 KB of address space and depending on type of MSP430 can have either 16 or 32 entries as 
shown in Figure 3. Each entry is one 16-bit word that contains the starting address of the 
corresponding interrupt service routine. The entry at the address 0xFFFE corresponds to the so-
called RESET vector – the MSP430 devices fetch the content of this location upon powering up 
and store it in the PC to start execution. The interrupt vector table in Figure 3 contains 16 
entries and each entry is given priority that corresponds to the entry number. Entry 15 (RESET 
vector) has the highest priority, followed by entry 14, and so on. The entry 14 contains the 
starting address of the ISR that handles NMI, Oscillator Fault, or Flash Memory Access Violation. 
This is an example of an interrupt service routine with multiple sources – these three hardware 
events are served by a single ISR and the code in this ISR has to investigate why the ISR is 
entered – which of these 3 flags is set and then handle them separately as shown in Figure 4. 
Also, we can notice that clearing these flags is one of the steps that has to be performed 
explicitly inside the ISR.  
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Figure 3. Interrupt Vector Table. 

 

 

Figure 4. NMI/OF/ACCIFG Handler. 
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Figure 5 shows an excerpt from an include file that specifies interrupt vector table for the 
MSP430FG4618 device.  
 
 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 1 
#define DAC12_VECTOR            ".int14"                     /* 0xFFDC DAC 12 */ 2 
#else 3 
#define DAC12_VECTOR            (14 * 1u)                    /* 0xFFDC DAC 12 */ 4 
#endif 5 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 6 
#define DMA_VECTOR              ".int15"                     /* 0xFFDE DMA */ 7 
#else 8 
#define DMA_VECTOR              (15 * 1u)                    /* 0xFFDE DMA */ 9 
#endif 10 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 11 
#define BASICTIMER_VECTOR       ".int16"                     /* 0xFFE0 Basic Timer / RTC */ 12 
#else 13 
#define BASICTIMER_VECTOR       (16 * 1u)                    /* 0xFFE0 Basic Timer / RTC */ 14 
#endif 15 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 16 
#define PORT2_VECTOR            ".int17"                     /* 0xFFE2 Port 2 */ 17 
#else 18 
#define PORT2_VECTOR            (17 * 1u)                    /* 0xFFE2 Port 2 */ 19 
#endif 20 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 21 
#define USART1TX_VECTOR         ".int18"                     /* 0xFFE4 USART 1 Transmit */ 22 
#else 23 
#define USART1TX_VECTOR         (18 * 1u)                    /* 0xFFE4 USART 1 Transmit */ 24 
#endif 25 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 26 
#define USART1RX_VECTOR         ".int19"                     /* 0xFFE6 USART 1 Receive */ 27 
#else 28 
#define USART1RX_VECTOR         (19 * 1u)                    /* 0xFFE6 USART 1 Receive */ 29 
#endif 30 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 31 
#define PORT1_VECTOR            ".int20"                     /* 0xFFE8 Port 1 */ 32 
#else 33 
#define PORT1_VECTOR            (20 * 1u)                    /* 0xFFE8 Port 1 */ 34 
#endif 35 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 36 
#define TIMERA1_VECTOR          ".int21"                     /* 0xFFEA Timer A CC1-2, TA */ 37 
#else 38 
#define TIMERA1_VECTOR          (21 * 1u)                    /* 0xFFEA Timer A CC1-2, TA */ 39 
#endif 40 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 41 
#define TIMERA0_VECTOR          ".int22"                     /* 0xFFEC Timer A CC0 */ 42 
#else 43 
#define TIMERA0_VECTOR          (22 * 1u)                    /* 0xFFEC Timer A CC0 */ 44 
#endif 45 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 46 
#define ADC12_VECTOR            ".int23"                     /* 0xFFEE ADC */ 47 
#else 48 
#define ADC12_VECTOR            (23 * 1u)                    /* 0xFFEE ADC */ 49 
#endif 50 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 51 
#define USCIAB0TX_VECTOR        ".int24"                     /* 0xFFF0 USCI A0/B0 Transmit */ 52 
#else 53 
#define USCIAB0TX_VECTOR        (24 * 1u)                    /* 0xFFF0 USCI A0/B0 Transmit */ 54 
#endif 55 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 56 
#define USCIAB0RX_VECTOR        ".int25"                     /* 0xFFF2 USCI A0/B0 Receive */ 57 
#else 58 
#define USCIAB0RX_VECTOR        (25 * 1u)                    /* 0xFFF2 USCI A0/B0 Receive */ 59 
#endif 60 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 61 
#define WDT_VECTOR              ".int26"                     /* 0xFFF4 Watchdog Timer */ 62 
#else 63 
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#define WDT_VECTOR              (26 * 1u)                    /* 0xFFF4 Watchdog Timer */ 64 
#endif 65 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 66 
#define COMPARATORA_VECTOR      ".int27"                     /* 0xFFF6 Comparator A */ 67 
#else 68 
#define COMPARATORA_VECTOR      (27 * 1u)                    /* 0xFFF6 Comparator A */ 69 
#endif 70 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 71 
#define TIMERB1_VECTOR          ".int28"                     /* 0xFFF8 Timer B CC1-2, TB */ 72 
#else 73 
#define TIMERB1_VECTOR          (28 * 1u)                    /* 0xFFF8 Timer B CC1-2, TB */ 74 
#endif 75 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 76 
#define TIMERB0_VECTOR          ".int29"                     /* 0xFFFA Timer B CC0 */ 77 
#else 78 
#define TIMERB0_VECTOR          (29 * 1u)                    /* 0xFFFA Timer B CC0 */ 79 
#endif 80 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 81 
#define NMI_VECTOR              ".int30"                     /* 0xFFFC Non-maskable */ 82 
#else 83 
#define NMI_VECTOR              (30 * 1u)                    /* 0xFFFC Non-maskable */ 84 
#endif 85 
#ifdef __ASM_HEADER__ /* Begin #defines for assembler */ 86 
#define RESET_VECTOR            ".reset"                     /* 0xFFFE Reset [Highest Priority] */ 87 
#else 88 
#define RESET_VECTOR            (31 * 1u)                    /* 0xFFFE Reset [Highest Priority] */ 89 
#endif90 

Figure 5. Interrupt Vector Table Definitions for MSP430FG4618. 

 

6 An Example: Toggling LEDs 
Let us start with a program that toggles LEDs on the TI Experimenter’s board. The program 
shown in Figure 6 stops the watchdog timer (line 27), initializes ports P2.1 and P2.2 as outputs 
(line 28), turns the LEDs off (line 29), and then enters an infinite loop. A software delay of ~1s is 
implemented using a do-while loop (line 33-49). Inside the loop, a number of assembly NOP 
instructions is inserted to ensure that one loop iteration takes 16 processor clock cycles. The 
number of iterations is set to 65,535 so that the delay corresponds to 16*65,535 clock cycles. 
The default processor clock frequency is 220 = 1,048,576 Hz. The total delay is thus 
approximately 1s. The P2OUT is xored with a constant 0x06 resulting in toggling LEDs every 1s 
(1s off, 1s on).  
 
 
/******************************************************************************** 1 
 *   File:         ToggleLEDs_1sSD_C.c 2 
 *   Description:  Program toggles LED1 and LED2 by 3 
 *                 xoring port pins inside of an infinite loop. 4 
 *                 1s software delay is implemented using a do-while loop. 5 
 *   Board:        MSP430FG461x/F20xx Experimenter Board 6 
 *   Clocks:       ACLK = 32.768kHz, MCLK = SMCLK = default DCO 7 
 * 8 
 *                 MSP430FG461x 9 
 *            +-----------------+ 10 
 *            |                 | 11 
 *            |                 | 12 
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 *            |                 | 13 
 *            |                 | 14 
 *            |             P2.1|--> LED2 15 
 *            |             P2.2|--> LED1 16 
 * 17 
 *   Author: Aleksandar Milenkovic, milenkovic@computer.org 18 
 *   Date:   September 2010 19 
********************************************************************************/ 20 
#include  <msp430.h> 21 
 22 
void main(void) { 23 
 24 
   unsigned int i=0; 25 
 26 
   WDTCTL = WDTPW + WDTHOLD;   // Stop watchdog timer 27 
   P2DIR |= (BIT1 | BIT2);     // Set P2.1 and P2.2 to output direction (0000_0110) 28 
   P2OUT = 0x00;               // Clear output port P2, P2OUT=0000_0000b 29 
   for (;;) { 30 
         i=0xFFFF;             // Set the number of iterations 65535 31 
                               // Delay is 65535*16cc/2^20 ~ 1s 32 
         do {                  // The number of NOPs ensures 33 
                               // that the one iteration takes 16 clock cycles 34 
               asm(" nop"); 35 
               asm(" nop"); 36 
               asm(" nop"); 37 
               asm(" nop"); 38 
               asm(" nop"); 39 
               asm(" nop"); 40 
               asm(" nop"); 41 
               asm(" nop"); 42 
               asm(" nop"); 43 
               asm(" nop"); 44 
               asm(" nop"); 45 
               asm(" nop"); 46 
               asm(" nop"); 47 
               i--; 48 
         } while(i!=0); 49 
         P2OUT ^= (BIT1 | BIT2); // Toggle P2.1 and P2.2 using exclusive-OR 50 
   } 51 
}52 

Figure 6. ToggleLEDs Using Software Delay. 

Figure 7 shows an alternative implementation of the toggling LEDs. Instead of software delay 
we rather use a watchdog timer peripheral configured in line 25. The watchdog control register 
is set as follows: the watchdog works in its interval mode setting WDTIFG bit every 1s (input 
clock is ACLK which is 215 Hz and the counter is set to 215 clock ticks). The counter inside the 
watchdog timer continually counts up on every ACLK clock with modulus 215. When 215 clocks 
are counted, the WDTIFG is set. The while loop in line 30 practically implements a wait state – 
the program repeatedly tests the WDTIFG bit in the IFG1 register. If WDTIFG is not set (the 
counter has not counted the specified number of clock cycles), the WDTIFG is checked again. 
Once the WDTIFG is set (after 1s), the program continues with toggling the LEDs. The WDTIFG is 
cleared and the process is repeated over and over. Generally, this approach to interfacing 
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peripherals is called polling – the processor is busy waiting for an event to occur in hardware. A 
better alternative is to enable interrupts from the watchdog timer.  
 
/******************************************************************************** 1 
 *   File:        ToggleLEDs_1sCWDTPolling.c 2 
 *   Description: Program toggles LED1 and LED2 by 3 
 *                xoring port pins inside of an infinite loop. 4 
 *                1s delay is implemented using WDT in interval mode. 5 
 *                Polling on WDTIFG is used inside the loop to detect 1s periods. 6 
 *   Board:       MSP430FG461x/F20xx Experimenter Board 7 
 *   Clocks:      ACLK = 32.768kHz, MCLK = SMCLK = default DCO 8 
 * 9 
 *                 MSP430FG461x 10 
 *            +-----------------+ 11 
 *            |                 | 12 
 *            |                 | 13 
 *            |                 | 14 
 *            |                 | 15 
 *            |             P2.1|--> LED2 16 
 *            |             P2.2|--> LED1 17 
 * 18 
 *   Author: Aleksandar Milenkovic, milenkovic@computer.org 19 
 *   Date:   September 2010 20 
********************************************************************************/ 21 
#include  <msp430.h> 22 
 23 
void main(void) { 24 
   WDTCTL = WDT_ADLY_1000;           // 1 s interval timer 25 
   P2DIR |= BIT2 + BIT1;             // Set P2.1 and P2.2 to output direction 26 
   P2OUT = 0x00;                     // LEDs are off 27 
   // use polling on WDTIFG (it's set every 1s) 28 
   for (;;) { 29 
      while ((IFG1 & WDTIFG) == 0); 30 
      P2OUT ^= (BIT1 | BIT2); 31 
      IFG1 &= ~WDTIFG;               // Clear WDTIFG in IFG1 32 
   } 33 
} 34 

Figure 7. ToggleLEDs Using WDT Polling. 

Figure 8 shows a program that toggles the LEDs using the watchdog timer interrupt service 
routine. Again the watchdog timer is configured to work in interval mode and to count to 215 
ACLK clock ticks (line 23). This time however we also enable interrupts from the watchdog timer 
(line 26). The BIT0 of IE1 keeps the WDTIE bit – by setting this bit we allow watchdog timer to 
generate an interrupt request once the WDTIFG bit is set. The statement in line 28 puts the 
processor into a sleep mode where the processor clock is off and program execution stops. 
When the watchdog timer counts the specified period, WDTIFG is set and as WDTIE and GIE are 
set too, the watchdog timer interrupt request is raised. This will trigger the processor to wake 
up (exception processing steps are carried out) and enter the watchdog timer interrupt service 
routine shown in lines 32-35. Using pragma we specify that this is the interrupt service routine 
for the watchdog timer (so that the corresponding entry in the interrupt vector table is properly 
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initialized). The ISR itself includes just a single statement that toggles the LEDs. Please note that 
since this is a single-source interrupt service routine, the WDTIFG bit is cleared automatically in 
exception processing.  
 
/******************************************************************************** 1 
 *   File:        ToggleLEDs_1sCWDTISR.c 2 
 *   Description: Program toggles LED1 and LED2 inside the WDT_ISR (interval mode). 3 
 *                WDT is set to raise an interrupt every 1s. 4 
 *   Board:       MSP430FG461x/F20xx Experimenter Board 5 
 *   Clocks:      ACLK = 32.768kHz, MCLK = SMCLK = default DCO 6 
 * 7 
 *                 MSP430FG461x 8 
 *            +-----------------+ 9 
 *            |                 | 10 
 *            |                 | 11 
 *            |                 | 12 
 *            |                 | 13 
 *            |             P2.1|--> LED2 14 
 *            |             P2.2|--> LED1 15 
 * 16 
 *   Author: Aleksandar Milenkovic, milenkovic@computer.org 17 
 *   Date:   September 2010 18 
********************************************************************************/ 19 
#include <msp430xG46x.h> 20 
 21 
void main(void) { 22 
    WDTCTL = WDT_ADLY_1000;               // 1s interval 23 
    P2DIR |= BIT2 + BIT1;                 // Set P2.2 and P2.1 to output direction 24 
    P2OUT = 0x00;                         // LEDs are off 25 
    IE1 |= WDTIE;                         // Enable WDT interrupt (WDTIE is set) 26 
 27 
    _BIS_SR(LPM0_bits + GIE);    // Enter LPM0(CPU is off); Enable interrupts 28 
} 29 
 30 
// Watchdog Timer interrupt service routine 31 
#pragma vector=WDT_VECTOR 32 
__interrupt void watchdog_timer(void) { 33 
    P2OUT ^= (BIT2 | BIT1);             // Toggle P2.1 and P2.2 using exclusive-OR 34 
} 35 
 36 

Figure 8. ToggleLEDs Using WDT ISR. 
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