

CPE 323: Serial Communication (UART) © A. Milenković 1

CPE 323: UART Serial Communication

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:

Introduce serial communication, specifically UART mode of serial communication and Universal
Serial Communication Interface (USCI) peripheral.

Contents

Objective: .. 1

Contents .. 1

1 Introduction ... 2

2 Universal Asynchronous Receiver/Transmitter (UART) .. 2

3 USCI: UART Mode .. 4

3.1 USCI Initialization: UART Mode .. 6

3.2 USCI UART Error Conditions ... 6

3.3 UART Baud Rate Generation .. 7

4 Examples .. 9

5 References ... 13

mailto:milenka@uah.edu

CPE 323: Serial Communication (UART) © A. Milenković 2

1 Introduction

Ability to communicate data is one of the core functionalities of any computer systems (the
others are sensing the environment, processing data, and storing data). When building
embedded systems we often need to provide means to exchange data between different
components on a single board (e.g., between a microcontroller and a sensor), between different
embedded systems (e.g., controller units in your car are all connected through a bus) or between
an embedded computer system and a workstation. To meet a diverse set of requirements and
design constraints, a multitude of communication protocols have been developed and used over
time.

We can classify communication techniques in embedded systems using different criteria.
Depending on the medium used to transfer data, the communication can be wired when data is
communicated by sending logic signals through wires, or wireless when data is turned into radio
waves through antennas and transferred wirelessly. Here we will focus on wired communication.
Based on the number of bits sent or received at a time, we can distinguish between serial
communication, where one bit is sent/received at a time, and parallel communication, where
multiple bits (>1) are sent/received at a time. Serial communication limits the number of bits that
can be communicated in unit of time (typically 1 bit of data is sent/received each clock cycle), but
it is less expensive (e.g., fewer traces are needed to be routed on the printed circuit board which
reduces the size and the cost of manufacturing or fewer wires are needed to connect to external
system). With parallel communication we can transfer more data bits at a time, but it will cost us
more. Next, based on the flow of data, communication can be unidirectional, a.k.a. simplex,
where data always flow in one direction, e.g., from device A to device B, or bidirectional, a.k.a.
duplex, where data can flow in both directions. Further, duplex communication can be half-
duplex – data can flow in both directions but only in one direction at a time because the same
set of wires is shared to carry information from device A to B and from device B to A, or full-
duplex – data can flow in both directions at the same time because separate sets of wires are
provided for data flow in each direction. Finally, depending on whether communicating parties
share a common clock, communication can be asynchronous when there is no common clock or
synchronous where the communicating parties share a common clock.

In this section we exclusively focus on wired serial communication protocols routinely used in
embedded systems, such as Universal Asynchronous Receiver/Transmitter (UART), Serial
Peripheral Interface (SPI), and Inter-Integrated Circuit Bus (I2C). MSP430 family of devices provide
several communication peripheral devices that include hardware support for serial
communication. They are Universal Serial Communication Interface (USCI), Universal Serial
Interface (USI), and Universal Synchronous/Asynchronous Receiver/Transmitter (USART).

2 Universal Asynchronous Receiver/Transmitter (UART)

Asynchronous serial communication is very popular type of communication in embedded
systems. It can be used to exchange data between components on the same board or between
different systems.

CPE 323: Serial Communication (UART) © A. Milenković 3

Figure 1 illustrates a system view of UART style of communication between two devices, called A
and B. The devices are physically connected using two wires that carry information from A to B
(top wire) and from B to A (middle wire). The communicating parties need to share a common
ground (Gnd). In this configuration we have a full-duplex asynchronous communication. Each
device requires two ports: TxD (Transmit Data) for data transmission and RxD (Receive Data) for
receiving data. The TxD port of A is connected to the RxD of B and RxD of A is connected to the
TxD of B.

Figure 1. UART communication: a system view

UART communication is asynchronous because devices A and B do not have a common clock. In
addition, they can be completely different types of devices, each with their own clock subsystem.
UART communication is typically character-oriented, where 8-bit characters are divided into
individual bits that are sent one by one from the transmitter time. The individual bits are grouped
into characters at the receiving side.

How does UART communication work? Both the transmitter and receiver should properly
initialize their respective communication interfaces for UART type of communication. The
initialization involves steps to set up the baud rates (or bit rates) that defines at what speed the
communication interfaces transmit/receive data (they should be the same for the transmitter
and receiver), format of characters, and how to handle errors in communication. Upon
initialization, the transmitter device (e.g., A) writes a byte of data into a TxBUF (transmit data
buffer) register of its serial communication interface. This character is then typically moved into
a serial shift register and control logic of the communication interface takes care of transmitting
data, one bit at a time. The communication interface of the receiver shifts in one bit of data at a
time in its shift register. When all bits in a character are received, the character is moved into a
RxBUF (receive data buffer) register and a flag is set to indicate that a new character has been
received.

How does a receiver know that new transmission is underway? To answer this question, let us
take a look how the signal look like during transmission of one character as observed on the TxD
port pin. Figure 2 shows a format of a character. When there is no transmission the TxD port is

A B

RxD

RxD

TxD

TxD

Gnd

CPE 323: Serial Communication (UART) © A. Milenković 4

held a logic ‘1’. When a new character transmission starts, a START (ST) bit is transmitted – one
bit period at a logic ‘0’. Then the character bits are sent (D0-D7), followed by optional the address
bit (AD), parity bit (PA), and one or two stop bits. Thus, to transmit one 8-bit character with a
parity bit and 2 stop bits, we need in total 1 (start) + 8 (data) + 1 (parity) + 2 (stop) = 12 bits or
12 ∙ 𝑇𝐵𝐼𝑇𝐶𝐿𝐾 in time. The serial communication interface is responsible for inserting start, stop,
and parity bits, but both transmitter and receiver should use the same character format.

Figure 2. Format of a character

3 USCI: UART Mode

The Universal Serial Communication Interface or USCI for short is a TI peripheral that supports
several serial synchronous and asynchronous communication protocols including UART mode.
The UART mode supports several configurable parameters as follows:

 7 or 8-bit data

 odd, even parity or no parity at all

 MSB or LSB bit is sent first

 programmable baud rate

 status flags for error detection and suppression

 receiver start-edge detection for auto-wake up from LPMx modes

 support for multiprocessing modes.
Figure 3 shows a block diagram of the USCI. We can identify the receiver block on the top with
the receiver data buffer (UC0RXBUF), the receive shift register (not visible to programmers), and
connection to the UC0RX port pin. The transmitter block at the bottom includes the transmit data
buffer (UCA0TXBUF), the transmit shift register (not visible to programmers), and a connection
to the UC0TX port pin. The middle block is baud rate generator that takes one of the input clocks
(UC0CLK, ACLK, SMCLK) and generates the communication bit clocks for both the transmit and
receive blocks.

CPE 323: Serial Communication (UART) © A. Milenković 5

Figure 3. USCI block diagram: UART mode

USCI communication interface contains two channels (A0 and A1) and USCI registers visible to
programmers are shown in Figure 4. USCI is an 8-bit peripheral devices and all registers and 8-bit
long. The notable registers are two control registers (UCA0CTL0 and UCA0CTL1), baud rate
control registers (UCA0BR0 and UCA0BR1), a modulation control register (UMA0MCTL), a status
register (UCA0STAT), the receive buffer (UC0RXBUF), and the transmit buffer (UC0TXBUF). In
addition, the system-wide registers IFG2 and IE2 contain flags of interest for the USCI interface.
The channel 1 contains a similar set of registers. To learn more about the format of these registers
and their functionality, please consult the user’s manual (Chapter 19: Universal Serial
Communication Interface: UART Mode).

CPE 323: Serial Communication (UART) © A. Milenković 6

Figure 4. USCI_A0 Control and Status Registers

3.1 USCI Initialization: UART Mode

To initialize the USCI in UART mode the following sequence of steps is recommended:
1. Set UCSWRST bit (software reset: BIS.B #UCSWRST, &UCAxCTL1) to reset the USCI state

machine
2. Initialize all USCI registers with UCSWRST=1 (baud rate control, modulation control,

control registers)
3. Configure ports (TxD, RxD special function)
4. Clear UCSWRST (BIS.B #UCSWRST, &UCAxCTL1)
5. Enable interrupts (optional) by setting UCAxRXIE and UCAxTXIE.

The interrupt vector table contains separate entries for interrupts from the receiver and
transmitter in the USCI.

3.2 USCI UART Error Conditions

The USCI peripheral can detect framing errors, parity errors, overrun errors, and break conditions
when receiving characters as shown in Figure 5. The USCI can be configured to generate an
interrupt when received erroneous character conditions are detected (UCRXEIE bit in the
UCAxCTL1 register). When UCFE, UCPE, UCOE, and UCBRK or UCRXERR is set, the bit remains set
until user software resets it or UCAxRXBUF is read. To detect overflows (a new character is
received while the previous one has not been read yet) the following flow is recommended. After
a character is received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags
including OCOE. Read UCAxRXBUF next. This will clear all error flags except UCOE if UCAxRXBUF

CPE 323: Serial Communication (UART) © A. Milenković 7

was overwritten between the read access to UCAxSTAT and the read access to UCAxRXBUF. To
detect this condition (buffer overwrite between these two reads), the OCOE bit should be read
after reading UCAxRXBUF.

Figure 5. Receive Error Conditions

3.3 UART Baud Rate Generation

The USCI baud rate generator can produce standard baud rates from non-standard source
frequencies. It provides two modes of operation: low-frequency mode (UCOS16 = 0) and over-
sampling mode (UCOS16 = 1).

The low-frequency mode allows generation of baud rates from low frequency clock sources that
reduce energy consumed by the communication interface. For example, we may have FBAUD=9600
bps, and the source clock is BRCLK=ACLK= 32,768 Hz. By dividing 32,768 with 9,600 we get
N=3.41. The challenge is that the baud rate divider cannot use fractions. Instead we initialize the
baud rate registers UCBRx = INT(N) = 3, and the UCBRSx field UCBRSx = round((N – INT(N))*8)=3.
THe UCBRSx 3-bit field controls the second modulation stage. The way this works is as follows: 5
bits (or 8 – UCBRSx bits) will have duration of 3 source clock periods (BRCLK) and 3 bits (UCBRSx
bits) will have duration of 4 (N+1 in general) source clock periods, BRCLK, providing an average
to be close to 3.41. Thus, some bits during transmission take 3 BRCLK periods and some take 4
BRCLK periods. The duration is modulated in such a way to minimize the error in communication

CPE 323: Serial Communication (UART) © A. Milenković 8

from the targeted bit rate for each bit period. Figure 6 shows common combinations of clock
sources and baud rates and how to set the baud rate control registers.

Figure 6. Commonly user baud rates and settings in low-frequency mode

For oversampling mode, the baud rate generator first generates a clock fBIT16CLK that is 16 times
fbaud. To illustrate settings for the baud rate generator, let us assume that our target baud rate is
fbaud = 9600 Hz and the source clock is fBRCLK = 220 Hz. One bit period, Tbaud, thus contain N =
fBRCLK/fbaud = 109.22 > 16 source clock periods. Dividing N with 16 we get 6.83, i.e., one period of
TBIT16CLK contain 6.83 source clock periods. In this case the baud rate register UCABRx is set to
INT(N/16) = 6, and the first stage modulator to UCBRFx= round ((N/16 – INT(N/16))*16) = 13.
The meaning of this is as follows: out of 16 bit periods TBIT16CLK in one TBAUD, 13 BIT16CLK cycles
will have 7 (or N+1 in general) BRCLK clocks and 3 BIT16CLK cycles will have 6 (or N in general)
BRCLK clocks, giving on average 6.83 BRCLK clock cycles. The modulator ensures that these
different BIT16CLK clocks are spread in such a way to minimize error in communication. Figure 7
shows how to setup baud rate control registers in oversampling mode for common combinations
of clock sources and baud rates.

CPE 323: Serial Communication (UART) © A. Milenković 9

Figure 7. Commonly user baud rates and settings in oversampling mode

4 Examples

/*-- 1
 * File: Lab8_D1.c 2
 * Function: Echo a received character, using polling. 3
 * Description: This program echos the character received from UART back to UART. 4
 * Toggle LED4 with every received character. 5
 * Baud rate: low-frequency (UCOS16=0); 6
 * 1048576/115200 = ~9.1 (0x0009|0x01) 7
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 8
 * 9
 * Instructions: Set the following parameters in putty 10
 * Port : COM1 11
 * Baud rate : 115200 12

CPE 323: Serial Communication (UART) © A. Milenković 10

 * Data bits: 8 13
 * Parity: None 14
 * Stop bits: 1 15
 * Flow Control: None 16
 * 17
 * MSP430xG461x 18
 * ----------------- 19
 * /|\ | XIN|- 20
 * | | | 32kHz 21
 * |--|RST XOUT|- 22
 * | | 23
 * | P2.4/UCA0TXD|------------> 24
 * | | 115200 - 8N1 25
 * | P2.5/UCA0RXD|<------------ 26
 * | P5.1|----> LED4 27
 * 28
 * Input: None (Type characters in putty/MobaXterm/hyperterminal) 29
 * Output: Character echoed at UART 30
 * Author: A. Milenkovic, milenkovic@computer.org 31
 * Date: October 2018 32
 --/ 33
#include <msp430xG46x.h> 34
void main(void) { 35
 WDTCTL = WDTPW+WDTHOLD; // Stop WDT 36
 P5DIR |= BIT1; // Set P5.1 to be output 37
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 38
 P2SEL |= BIT4 + BIT5; // P2.4,5 = USCI_A0 RXD/TXD 39
 UCA0CTL1 |= UCSSEL_2; // BRCLK=SMCLK 40
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 41
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 42
 UCA0MCTL |= BIT2; // Modulation (UCBRS0=0x01)(UCOS16=0) 43
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 44
 while (1) { 45
 while(!(IFG2&UCA0RXIFG)); // Wait for a new character 46
 // new character is here in UCA0RXBUF 47
 while(!(IFG2&UCA0TXIFG)); // Wait until TXBUF is free 48
 UCA0TXBUF = UCA0RXBUF; // TXBUF <= RXBUF (echo) 49
 P5OUT ^= BIT1; // Toggle LED4 50
 } 51
}52

Figure 8. Echo a character using polling

/*-- 1
 * File: Lab8_D2.c 2
 * Function: Echo a received character, using receiver ISR. 3
 * Description: This program echos the character received from UART back to UART. 4
 * Toggle LED4 with every received character. 5
 * Baud rate: low-frequency (UCOS16=0); 6
 * 1048576/115200 = ~9.1 (0x0009|0x01) 7
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 8
 * 9
 * Instructions: Set the following parameters in putty 10

CPE 323: Serial Communication (UART) © A. Milenković 11

 * Port : COM1 11
 * Baud rate : 115200 12
 * Data bits: 8 13
 * Parity: None 14
 * Stop bits: 1 15
 * Flow Control: None 16
 * 17
 * MSP430xG461x 18
 * ----------------- 19
 * /|\ | XIN|- 20
 * | | | 32kHz 21
 * |--|RST XOUT|- 22
 * | | 23
 * | P2.4/UCA0TXD|------------> 24
 * | | 115200 - 8N1 25
 * | P2.5/UCA0RXD|<------------ 26
 * | P5.1|----> LED4 27
 * 28
 * Input: None (Type characters in putty/MobaXterm/hyperterminal) 29
 * Output: Character echoed at UART 30
 * Author: A. Milenkovic, milenkovic@computer.org 31
 * Date: October 2018 32
 --/ 33
#include <msp430xG46x.h> 34
void main(void) { 35
 WDTCTL = WDTPW+WDTHOLD; // Stop WDT 36
 P5DIR |= BIT1; // Set P5.1 to be output 37
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 38
 P2SEL |= BIT4 + BIT5; // P2.4,5 = USCI_A0 RXD/TXD 39
 UCA0CTL1 |= UCSSEL_2; // BRCLK=SMCLK 40
 UCA0BR0 = 0x09; // 1MHz/115200 (lower byte) 41
 UCA0BR1 = 0x00; // 1MHz/115200 (upper byte) 42
 UCA0MCTL |= BIT2; // Modulation (UCBRS0=0x01)(UCOS16=0) 43
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 44
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt 45
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 46
} 47
 48
// Echo back RXed character, confirm TX buffer is ready first 49
#pragma vector=USCIAB0RX_VECTOR 50
__interrupt void USCIA0RX_ISR (void) { 51
 while(!(IFG2&UCA0TXIFG)); // Wait until can transmit 52
 UCA0TXBUF = UCA0RXBUF; // TXBUF <= RXBUF 53
 P5OUT^=BIT1; // Toggle LED4 54
} 55

Figure 9. Echo a character using receiver ISR

/*-- 1
 * File: Lab8_D3.c 2
 * Function: Displays real-time clock in serial communication client. 3
 * Description: This program maintains real-time clock and sends time 4
 * (10 times a second) to the workstation through 5

CPE 323: Serial Communication (UART) © A. Milenković 12

 * a serial asynchronous link (UART). 6
 * The time is displayed as follows: "sssss:tsec". 7
 * 8
 * Baud rate divider with 1048576hz = 1048576/19200 = ~54 9
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO = 1048576Hz 10
 * Instructions: Set the following parameters in putty/hyperterminal 11
 * Port : COM1 12
 * Baud rate : 19200 13
 * Data bits: 8 14
 * Parity: None 15
 * Stop bits: 1 16
 * Flow Control: None 17
 * 18
 * MSP430xG461x 19
 * ----------------- 20
 * /|\ | XIN|- 21
 * | | | 32kHz 22
 * |--|RST XOUT|- 23
 * | | 24
 * | P2.4/UCA0TXD|------------> 25
 * | | 19200 - 8N1 26
 * | P2.5/UCA0RXD|<------------ 27
 * | P5.1|----> LED4 28
 * 29
 * Author: A. Milenkovic, milenkovic@computer.org 30
 * Date: October 2018 31
--*/ 32
#include <msp430xG46x.h> 33
#include <stdio.h> 34
 35
// Current time variables 36
unsigned int sec = 0; // Seconds 37
unsigned int tsec = 0; // 1/10 second 38
char Time[8]; // String to keep current time 39
 40
//Function Declarations 41
void SetTime(void); 42
void SendTime(void); 43
 44
void UART_Initialize(void) { 45
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 46
 P2SEL |= BIT4 + BIT5; // Set UC0TXD and UC0RXD to transmit and receive 47
 UCA0CTL0 = 0; // USCI_A0 control register 48
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK 49
 UCA0BR0 = 54; // 1048576 Hz / 19200 = 54 | 5 50
 UCA0BR1 = 0; 51
 UCA0MCTL = 0x0A; // Modulation 52
 UCA0CTL1 &= ~UCSWRST; // Clear software reset 53
} 54
 55
// Sets the real-time clock variables 56
void SetTime(void) { 57
 tsec++; 58
 if (tsec == 10){ 59
 tsec = 0; 60

CPE 323: Serial Communication (UART) © A. Milenković 13

 sec++; 61
 P5OUT ^= BIT1; 62
 } 63
} 64
 65
// Sends the time through a serial link 66
void SendTime(void) { 67
 int i; 68
 69
 sprintf(Time, "%05d:%01d", sec, tsec); // Prints time to a string 70
 for (i = 0; i < 8; i++) { // Send character by character 71
 while (!(IFG2 & UCA0TXIFG)); 72
 UCA0TXBUF = Time[i]; 73
 } 74
 while (!(IFG2 & UCA0TXIFG)); 75
 UCA0TXBUF = 0x0D; // Carriage Return 76
} 77
 78
void main(void) { 79
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 80
 UART_Initialize(); // Initialize UART 81
 //Initialize Timer A to measure 1/10 sec 82
 TACTL = TASSEL_2 + MC_1 + ID_3; // Select SMCLK/8 and up mode 83
 TACCR0 = 13107; // 100ms interval 84
 TACCTL0 = CCIE; // Capture/compare interrupt enable 85
 P5DIR |= BIT1; // P5.1 is output; 86
 while (1) { // Main loop 87
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupts 88
 SendTime(); // Send Time to HyperTerminal 89
 } 90
} 91
 92
// Interrupt for the timer 93
#pragma vector=TIMERA0_VECTOR 94
__interrupt void TIMERA_ISA(void) { 95
 SetTime(); // Set Clock 96
 _BIC_SR_IRQ(LPM0_bits); // Clear LPM0 bits from 0(SR) 97
} 98

Figure 10. Display real-time clock

5 References

