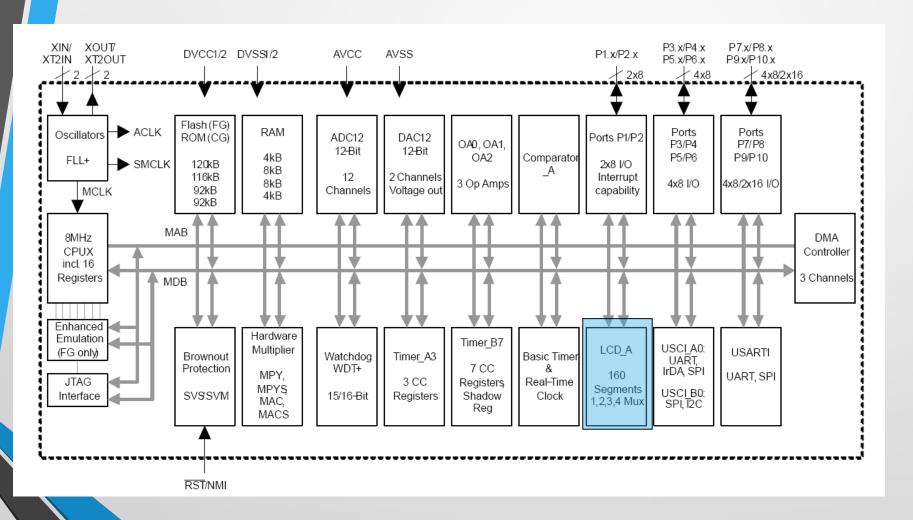


CPE 323: MSP430 LCD_A Controller

Aleksandar Milenkovic


Electrical and Computer Engineering The University of Alabama in Huntsville

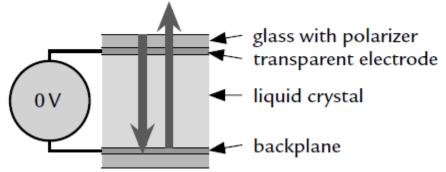
milenka@ece.uah.edu

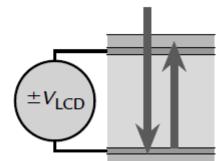
http://www.ece.uah.edu/~milenka

MSP430xG461x Microcontroller

LCD Displays

- LCD Liquid crystal display
 - Use much less power than LEDs
 - Does not emit light itself but controls the intensity of reflected or transmitted light
 - Backlight must be provided for a display to be used in dark surroundings
- Three classes
 - Segmented LCDs
 - Character-based LCDs
 - Fully graphical LCDs

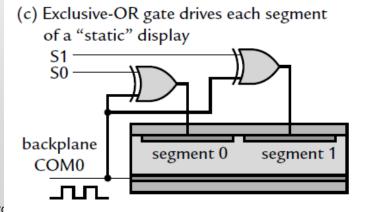




Reflective LCD: Operation Basics

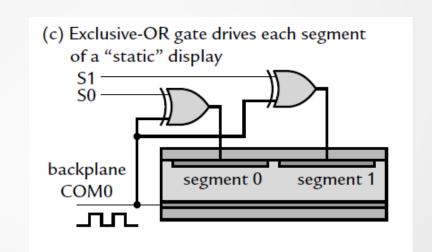
- Construction: two glass plates carry transparent electrodes on their opposing faces and there is a mirror below the lower plate
 - Gap between is filled with a liquid crystal
- Bias voltage between electrodes = 0 =>
 Incident light is reflected and the display appears clear
- Sufficiently large bias voltage changes the optical properties of the liquid crystal so that reflected light is no longer transmitted through the upper glass and the segment appears dark
- Electrically the display is similar to a capacitor, albeit rather lossy

(a) No voltage applied: incident light reflected (b) Voltage applied: light absorbed


Reflective LCD: Operation Basics (cont'd)

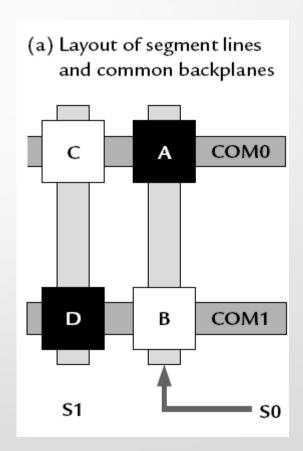
- Complication: LCDs must be driven with AC, not DC
 - A steady voltage of only a few tens of millivolts leads to electrolysis of the liquid crystal, which eventually destroys the display
- Approach: The two electrodes of a segment are therefore driven with square waves in antiphase to produce an alternating voltage with zero mean
 - The frequency is low, typically around 100 Hz, but must not be close to multiples of the AC mains (line) frequency (50 or 60 Hz)
 - The output of many lights fluctuates at twice the frequency of the mains and the LCD appears to flicker if it is updated at a similar rate

Driving Multiple Segments in LCDs


- Common backplane: COM A square wave provides a clock to bias the display
- Each segment on the front has a separate connection: S0, S1
- An exclusive-OR gate with a control signal to each segment:
 - Si=0 => XOR gate transmits clock on COM0 unchanged => there is no potential difference between the electrodes, and the segment remains clear
 - Si=1 => XOR inverts the clock so that an alternating bias is applied to the segment, which turns dark
- XOR gates could be real devices but it is straightforward to implement this inside the MCU by toggling the outputs periodically

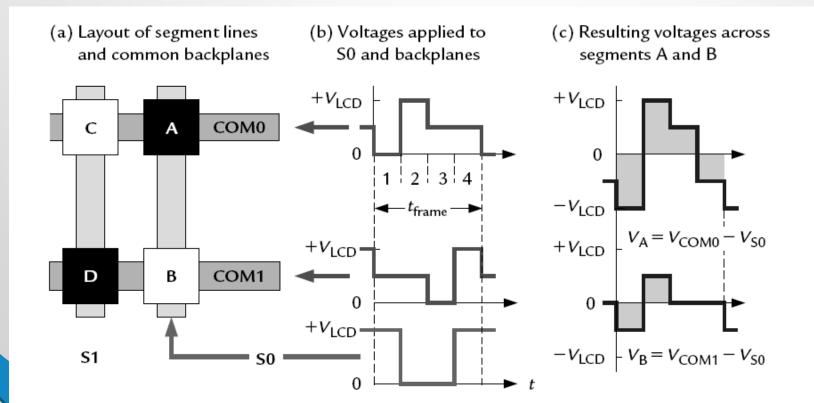
Driving Multiple Segments in LCDs (cont'd)

- Static approach:
 - One pin for each segment on display + one pin for backplane
 - Problem: Large number of pins



Solution:

- Multiplexed displays require fewer pins (multiple segments share a single pin)
- Drawback: more trickier to multiplex LCDs because of the requirement for AC drive



- Example
 - 4 segments (A, B, C, and D)
 - 1 backplane
- Static: 5 pins
- Multiplexed: 4 pins
 - 2 common backplanes (COM0, COM1)
 - 2 signals (S0, S1)

- Segment A: $V_{COM0} V_{S0}$; Segment B: $V_{COM1} V_{S0}$
- Segment C: V_{COM0} –V_{S1}; Segment D: V_{COM1} V_{S1}

- Each period of the waveforms, called a frame, is divided into four phases:
- 1. The segments on COMO are addressed in the first phase by pulling COMO to ground (0 V).
 - Segment A should be on and SO is therefore driven to its maximum value, V_{LCD}
 - $V_A = V_{COMO} V_{SO} = -V_{LCD}$
 - The segments on COM1 should be inactive during this phase and it is therefore put at a "neutral" voltage of $1/2V_{ICD}$
 - $V_B = V_{COM1} V_{S0} = -1/2V_{ICD}$
- 2. The voltages in the second phase are the opposite of those in the first to ensure a pure AC signal with zero mean
 - $V_{COM0} = V_{LCD}$ and $V_{S0} = 0$ to give $V_A = +V_{LCD}$
 - The backplane that is not being addressed, COM1, remains at its neutral voltage of $1/2V_{LCD}$ so that $V_B = +1/2V_{LCD}$
- 3. Now it is the turn of COM1 to be addressed so it is pulled to ground and COM0 is set to neutral $1/2V_{\rm LCD}$
 - Segment B should be off and SO is therefore pulled to ground as well
- 4. This is the opposite of phase 3 to ensure that the mean voltage remains 0.

- It is not possible to apply either the maximum voltage $\pm V_{LCD}$ at all times to segments that should be on nor a constant value of 0 to those that should be off
- Response of a segment depends on the root mean square (rms)
 value of the bias across it
- Suppose that $V_{LCD} = 3.0 \text{ V.}$ Then the values here are
 - $Vrms\ A = \sqrt{5/8}\ V_{LCD} \approx 2.4V$
 - Vrms $B = \sqrt{1/8} V_{LCD} \approx 1.1 V$
- The rms voltages have a ratio of V5 and are sufficiently large and small to make the segments dark and clear, respectively
- The drive is no longer purely "digital" because a voltage of 1/2 V_{LCD} is needed

LCD_A Display Clock

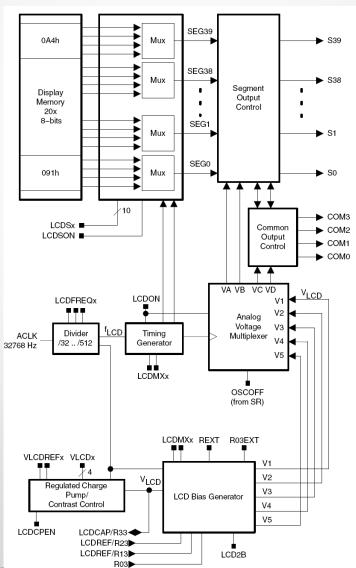
- Refresh rate: 30 Hz or faster to avoid flicker
 - Higher frequencies give a clearer display but consume more current
- 2-way multiplexed: 2x2, 4 clocks per frame
- 4-way multiplexed display needs eight clock cycles per frame (4x2)
 - fLCD must be at least 240 Hz
 - ACLK is at the usual 32 KHz =>
 32 K/240 = 136 or less,
 so a factor of 128 would probably be chosen

LCD_A Bias Voltage

- LCD_A has an internal chain of resistors
 - No external components are needed other than the display itself
 - An external resistor chain can be used to reduce the current required. A variable resistor can be attached as a contrast control

LCD_A Bias Voltage

- LCD_A offers three choices for the voltage to drive the display:
 - 1) Internal AVCC
 - 2) An external voltage, which may be used with either the internal or an external divider
 - 3) An internal charge pump, which provides an adjustable, regulated output in the range 2.60–3.44V, which can be controlled from software
 - A reservoir capacitor CLCD of at least 4.7F for the charge pump must be connected to the LCDCAP pin
 - Note: CPU may operate on low voltages


LCD_A Controller

- Liquid Crystal Display (LCD) controller
 - Included in several devices of the MSP430 families ('3xx and '4xx)
 - Allows a rapid and simple way to interface with the program
- LCD controller commands the LCD panels generating voltage signals to the segments
- Features
 - Display memory
 - Automatic signal generation
 - Configurable frame frequency
 - Blinking capability
 - Support for 4 types of LCDs:
 - Static
 - 2-mux, 1/2 bias
 - 3-mux, 1/3 bias
 - 4-mux, 1/3 bias

LCD_A Controller Block Diagram

LCD Memory Map

- Each memory bit corresponds to one LCD segment, or is not used, depending on the mode
- To turn on an LCD segment, its corresponding memory bit is set

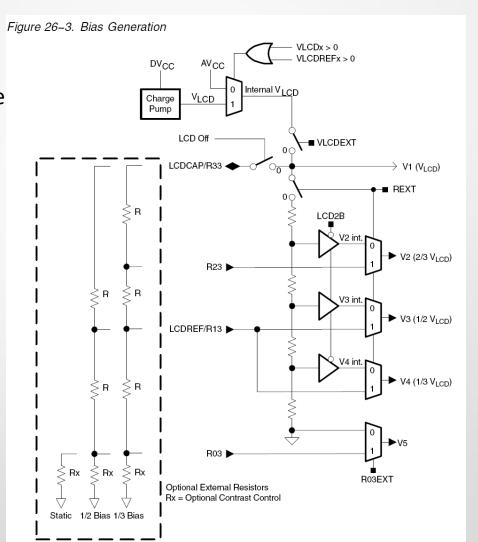
Associated Common Pins	3	2	1	0	3	2	1	0	A	ssociated
Address	7							0	n Se	egment Pins
0A4h									38	39, 38
0A3h	1	-			-				36	37, 36
0A2h	-				-				34	35, 34
0A1h	-								32	33, 32
0A0h		-			-				30	31, 30
09Fh									28	29, 28
09Eh	-	-			1				26	27, 26
09Dh	-				-				24	25, 24
09Ch	-	1		-	i				22	23, 22
09Bh	-	-			-				20	21, 20
09Ah		1			1				18	19, 18
099h	1	-			-				16	17, 16
098h		-			-				14	15, 14
097h	-	-			-				12	13, 12
096h	-	-			-				10	11, 10
095h		-			-				8	9, 8
094h	-	-			1				6	7, 6
093h									4	5, 4
092h									2	3, 2
091h	-								0	1, 0
	\					$\overline{}$				
Sn+1 Sn										

LCD Controller Operation

- LCD controller supports blinking
 - The LCDSON bit is ANDed with each segment's memory bit.
 - When LCDSON = 1, each segment is on or off according to its bit value
 - When LCDSON = 0, each LCD segment is off
- Timing generation
 - Uses the f_{LCD} signal to generate the timing for common and segment lines
 - Proper frequency f_{LCD} depends on the LCD's requirement for framing frequency and LCD multiplex rate

LCD_A Voltage Generation

- Allows selectable sources for the peak output waveform voltage, V1, as well as the fractional LCD biasing voltages V2 – V5
- VLCD may be sourced from AVCC, an internal charge pump, or externally
- All internal voltage generation is disabled if the oscillator sourcing ACLK is turned off (OSCOFF = 1) or the LCD_A module is disabled (LCDON = 0)


LCD_A Voltage Selection

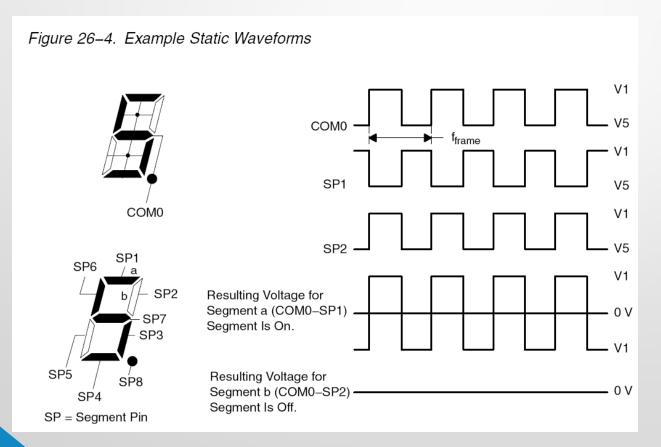
- Sourced from
 - AVCC when VLCDEXT = 0, VLCDx = 0, and VREFx = 0.
 - the internal charge pump when VLCDEXT = 0, VLCDPEN = 1, and VLCDx > 0
 - The charge pump is always sourced from DVCC
 - The VLCDx bits provide a software selectable LCD voltage from 2.6 V to 3.44 V (typical) independent of DVCC
 - The internal charge pump may use an external reference voltage when VLCDREFx = 01. In this case, the charge pump voltage will be 3x the voltage applied externally to the LCDREF pin and the VLCDx bits are ignored.
 - When VLCDEXT = 1, VLCD is sourced externally from the LCDCAP pin and the internal charge pump is disabled.

Bias Generation

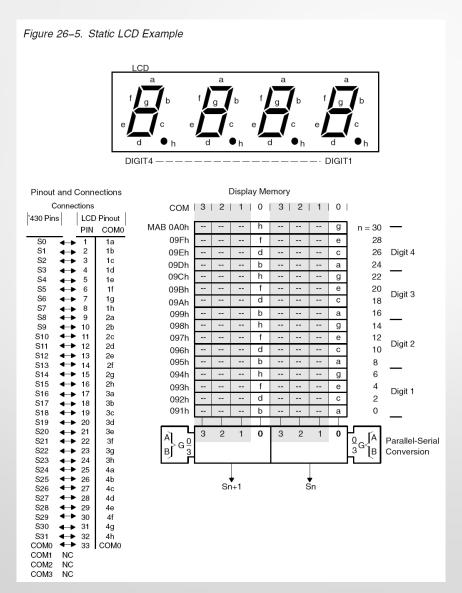
- The fractional LCD biasing voltages, V2 – V5 can be generate internally or externally, independent of the source for VLCD
- REXT bit

LCD_A Voltage Generation

- The contrast ratio depends on the used LCD display and the selected biasing scheme
- Table 26–1 shows the biasing configurations that apply to the different modes together with the RMS voltages for the segments turned on (VRMS,ON) and turned off (VRMS,OFF) as functions of VLCD. It also shows the resulting contrast ratios between the on and off states


Table 26-1.LCD Voltage and Biasing Characteristics

Mode	Bias Config	LCDMx	LCD2B	COM Lines	Voltage Levels	V _{RMS,OFF} / V _{LCD}	V _{RMS,ON} / V _{LCD}	Contrast Ratio V _{RMS,ON} / V _{RMS,OFF}
Static	Static	00	Χ	1	V1, V5	0	1	1/0
2-mux	1/2	01	1	2	V1, V3, V5	0.354	0.791	2.236
2-mux	1/3	01	0	2	V1, V2, V4, V5	0.333	0.745	2.236
3-mux	1/2	10	1	3	V1, V3, V5	0.408	0.707	1.732
3-mux	1/3	10	0	3	V1, V2, V4, V5	0.333	0.638	1.915
4-mux	1/2	11	1	4	V1, V3, V5	0.433	0.661	1.528
4–mux	1/3	11	0	4	V1, V2, V4, V5	0.333	0.577	1.732


Static Mode

- Each MSP430 segment pin drives one LCD segment
- One common line, COM0, is used

Static LCD Example

Static Mode Software Example

```
All eight segments of a digit are often located in four
   display memory bytes with the static display method.
      EQU
             001h
а
b
      EOU
             010h
                                                               d
                                                                      b
                                                                             g
                                                                                            C
                                                                                                   a
C
      EQU
             002h
      EQU
            020h
      EOU
            004h
      EOU
             040h
      EQU
             008h
      EQU
             080h
   The register content of Rx should be displayed.
   The Table represents the 'on'-segments according to the
   content of Rx.
      MOV.B Table (Rx),RY
                             ; Load segment information
                             ; into temporary memory.
                             (Ry) = 0000 0000 \text{ hfd}b \text{ geca}
      MOV.B Ry, &LCDn
                             ; Note:
                             ; All bits of an LCD memory
                                                                                    d
                                                                                         b
                                                                                              g
                                                                                                   e
                                                                                                         C
                                                                                                              a
                             ' byte are written
                             ; (Ry) = 0000 0000 0hfd bgec
      RRA
            Ry
      MOV.B Ry, &LCDn+1
                             ; Note:
                                                                                              b
                                                                                                   g
                             ; All bits of an LCD memory
                             ; byte are written
      RRA
             Rv
                             (Ry) = 0000 0000 00hf dbge
      MOV.B Ry, &LCDn+2
                             ; Note:
                                                                                                   b
                                                                                    h
                                                                                              d
                                                                                                         g
                             ; All bits of an LCD memory
                             ' byte are written
                             ; (Ry) = 0000 0000 000h fdbq
      RRA
             Ry
      MOV.B Ry, &LCDn+3
                             : Note:
                                                                                                   d
                                                                                                        b
                                                                         0
                                                                              0
                                                                                   0
                                                                                        h
                             ; All bits of an LCD memory
                             ' byte are written
Table DB
             a+b+c+d+e+f
                             ; displays "0"
```

b+c:

.

.

; displays "1"

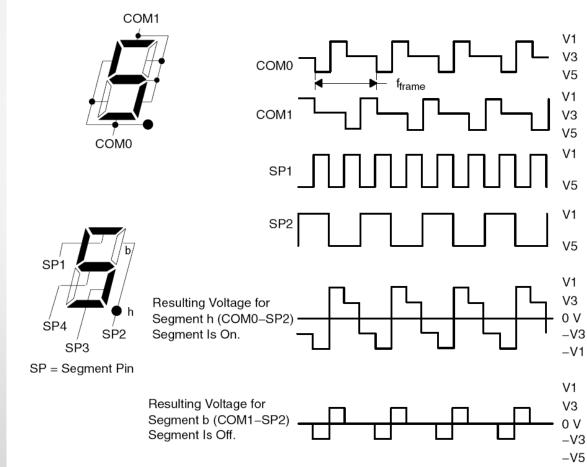
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

2-MUX Mode

- Each MSP430 segment Figure 26–6. Example 2-Mux Waveforms
 - pin drives two LCD segments
- Two common lines,
 COM0 and COM1, are
 used
- 2-mux example waverforms

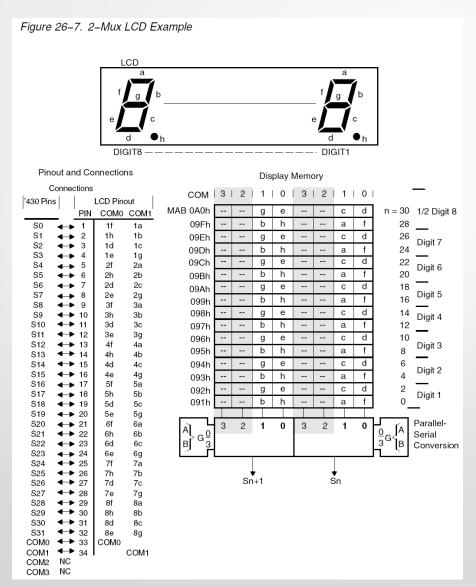
 $a = COM_1 - SP_1$

b=COM1-SP2


c=COM1-SP3

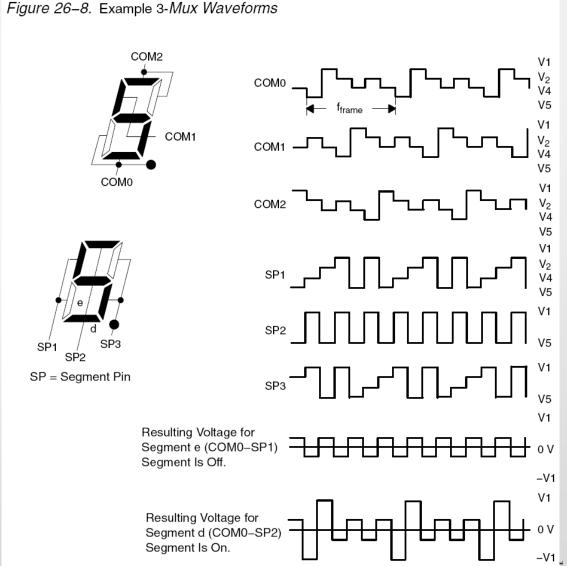
d=COMo-SP3

e=COMo-SP4

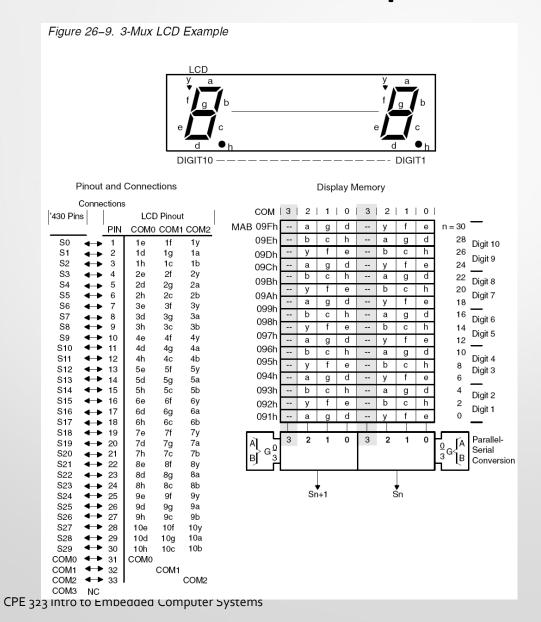

f=COMo-SP1

q = COM1 - SP4

2-MUX LCD Example


2-MUX Software Example

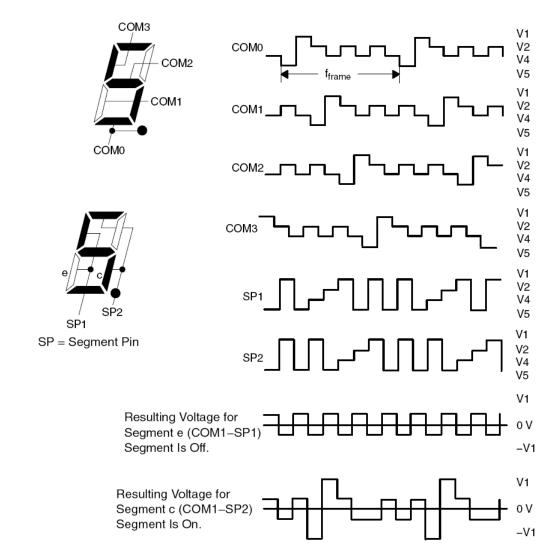
```
All eight segments of a digit are often located in two
   display memory bytes with the 2mux display rate
      EOU
            002h
а
      EQU
            020h
      EOU
            008h
      EQU
            004h
      EQU
            040h
      EQU
            001h
      EQU
            080h
      EQU
            010h
  The register content of Rx should be displayed.
   The Table represents the 'on'-segments according to the
   content of Rx.
      . . . . . . . . . . .
      MOV.B Table(Rx), Ry; Load segment information into
                         ; temporary memory.
      MOV.B Ry, &LCDn
                         ; (Ry) = 0000 0000 \text{ gebh cdaf}
                         ; Note:
                         ; All bits of an LCD memory byte
                         ; are written
      RRA
            Ry
                         ; (Ry) = 0000 0000
                                               0geb hcda
                         ; (Ry) = 0000 0000 00ge bhcd
      RRA
            Ry
      MOV.B Ry, &LCDn+1
                            ; Note:
                         ; All bits of an LCD memory byte
                         ; are written
                           ; displays "0"
Table DB
            a+b+c+d+e+f
            a+b+c+d+e+f+q ; displays "8"
      DB
```



3-MUX Mode Waverforms

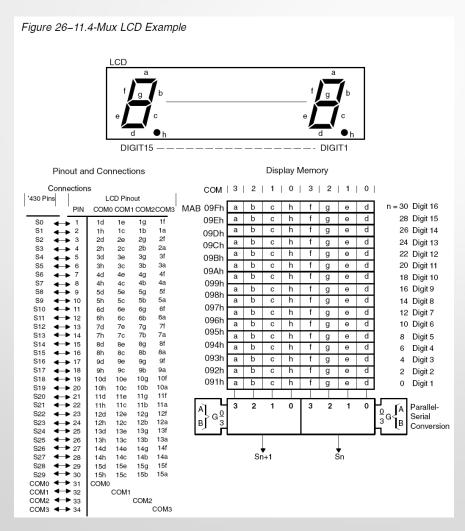
- Each MSP430 segment pin drives three LCD segments
- Three common lines,
 COM0 and COM1, and
 COM2 are used
- 3-mux example waverforms

3-MUX LCD Example

3-MUX Software Example


```
The 3mux rate can support nine segments for each
   digit. The nine segments of a digit are located in
   1 1/2 display memory bytes.
      EQU
            0040h
            0400h
            0200h
      EQU
            0010h
            0001h
      EQU
            0002h
            0020h
      EOU
            0100h
      EQU
            0004h
   The LSDigit of register Rx should be displayed.
   The Table represents the 'on'-segments according to the
   LSDigit of register of Rx.
   The register Ry is used for temporary memory
ODDDIGRLA
                         ; LCD in 3mux has 9 segments per
                         ; digit; word table required for
                         ; displayed characters.
            Table (Rx), Ry; Load segment information to
                         ; temporary mem.
                         ; (Ry) = 0000 0bch 0agd 0yfe
      MOV.B Ry, &LCDn
                         ; write 'a, g, d, y, f, e' of
                         ; Digit n (LowByte)
      SWPB Ry
                         ; (Ry) = 0agd 0yfe 0000 0bch
      BIC.B #07h, &LCDn+1; write 'b, c, h' of Digit n
                         ; (HighByte)
      BIS.B Ry, &LCD<sub>n+1</sub>
EVNDIGRLA Rx
                         ; LCD in 3mux has 9 segments per
                         ; digit; word table required for
                         ; displayed characters.
            Table (Rx), Ry; Load segment information to
                        ; temporary mem.
                         ; (Ry) = 0000 0bch 0agd 0yfe
                         ; (Ry) = 0000 bch0 agd0 vfe0
      RLA Ry
                         ; (Ry) = 000b ch0a gd0y fe00
      RLA RV
                         ; (Ry) = 00bc h0ag
                                              d0yf e000
                         ; (Ry) = 0bch 0agd 0yfe 0000
      BIC.B #070h, &LCD_{n+1}
      BIS.B Ry, &LCD<sub>n+1</sub>; write 'y, f, e' of Digit n+1
                         ; (LowByte)
      SWPB Rv
                         ; (Ry) = 0yfe 0000 0bch 0agd
      MOV.B Ry, &LCD<sub>n+2</sub>; write 'b, c, h, a, q, d' of
                         ; Digit n+1 (HighByte)
Table DW
            a+b+c+d+e+f ; displays "0"
                         ; displays "1"
            a+e+f+q
                         ; displays "F"
```


4-MUX Mode Waverforms


Figure 26-10. Example 4-Mux Waveforms

- Each MSP430 segment pin drives four LCD segments
- Four common lines, COM0, COM1, COM2, and COM3 are used
- 4-mux example waverforms

4-MUX LCD Example

4-MUX Software Example

```
The 4mux rate supports eight segments for each digit.
  All eight segments of a digit can often be located in
   one display memory byte
      EQU
            080h
      EQU
            040h
            020h
      EOU
            001h
      EQU
            002h
      EQU
      EQU
            008h
            004h
      EQU
      EQU
            010h
   The LSDigit of register Rx should be displayed.
  The Table represents the 'on'-segments according to the
   content of Rx.
     MOV.B Table(Rx), &LCDn; n = 1 \dots 15
                            ; all eight segments are
                            ; written to the display
                            ; memory
            a+b+c+d+e+f
                            ; displays "0"
Table DB
                            ; displays "1"
      DB
            b+c
            b+c+d+e+g
                            ; displays "d"
                            ; displays "E"
      DB a+d+e+f+g
            a+e+f+g
                            ; displays "F"
      DB
```


LCD Control Registers

Table 26-2.LCD Controller Registers

Register	Short Form	Register Type	Address	Initial State
LCD_A control register	LCDACTL	Read/write	090h	Reset with PUC
LCD memory 1	LCDM1	Read/write	091h	Unchanged
LCD memory 2	LCDM2	Read/write	092h	Unchanged
LCD memory 3	LCDM3	Read/write	093h	Unchanged
LCD memory 4	LCDM4	Read/write	094h	Unchanged
LCD memory 5	LCDM5	Read/write	095h	Unchanged
LCD memory 6	LCDM6	Read/write	096h	Unchanged
LCD memory 7	LCDM7	Read/write	097h	Unchanged
LCD memory 8	LCDM8	Read/write	098h	Unchanged
LCD memory 9	LCDM9	Read/write	099h	Unchanged
LCD memory 10	LCDM10	Read/write	09Ah	Unchanged
LCD memory 11	LCDM11	Read/write	09Bh	Unchanged
LCD memory 12	LCDM12	Read/write	09Ch	Unchanged
LCD memory 13	LCDM13	Read/write	09Dh	Unchanged
LCD memory 14	LCDM14	Read/write	09Eh	Unchanged
LCD memory 15	LCDM15	Read/write	09Fh	Unchanged
LCD memory 16	LCDM16	Read/write	0A0h	Unchanged
LCD memory 17	LCDM17	Read/write	0A1h	Unchanged
LCD memory 18	LCDM18	Read/write	0A2h	Unchanged
LCD memory 19	LCDM19	Read/write	0A3h	Unchanged
LCD memory 20	LCDM20	Read/write	0A4h	Unchanged
LCD_A port control 0	LCDAPCTL0	Read/write	0ACh	Reset with PUC
LCD_A port control 1	LCDAPCTL1	Read/write	0ADh	Reset with PUC
LCD_A voltage control 0	LCDAVCTL0	Read/write	0AEh	Reset with PUC
LCD_A voltage control 1	LCDAVCTL1	Read/write	0AFh	Reset with PUC

LCD_A Control Register

LCDACTL, LCD_A Control Register

_	7	6 5		4	3	2	1	0
		LCDFREQx		LCDMXx		LCDSON	Unused	LCDON
Ī	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

LCDFREQx	Bits 7-5	LCD frequency select. These bits select the ACLK divider for the LCD frequency. 000 Divide by 32 001 Divide by 64 010 Divide by 96 011 Divide by 128 100 Divide by 192 101 Divide by 256 110 Divide by 384 111 Divide by 512
LCDMXx	Bits 4-3	LCD mux rate. These bits select the LCD mode. 00 Static 01 2-mux 10 3-mux 11 4-mux
LCDSON	Bit 2	LCD segments on. This bit supports flashing LCD applications by turning off all segment lines, while leaving the LCD timing generator and R33 enabled. O All LCD segments are off All LCD segments are enabled and on or off according to their corresponding memory location.
Unused	Bit 1	Unused
LCDON	Bit 0	LCD On. This bit turns on the LCD_A module. CCD_A module off. LCD_A module on.

LCD_A Port Control Register

LCDAPCTL0, LCD_A Port Control Register 0									
7	6	5	4	3	2	1	0		
LCDS28	LCDS24	LCDS20	LCDS16	LCDS12	LCDS8	LCDS4	LCDS0 [†]		
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0		
† Segments S0–S3 on the MSP430FG461x devices are disabled from LCD functionality when charge pump is enabled.									
LCDS28	Т		ffects pins w D function.	vith multiplex port function		. Dedicated	LCD pins		
LCDS24	Т	CD segment his bit only a re always LC Multiple	24 to 27 end ffects pins w D function.	able vith multiplex port functior		. Dedicated	LCD pins		
LCDS20	Т		ffects pins w D function.	vith multiplex port function		. Dedicated	LCD pins		
LCDS16	Т		ffects pins w D function.	vith multiplex port function		. Dedicated	LCD pins		
LCDS12	Т		ffects pins w D function.	ith multiplex port function		. Dedicated	LCD pins		
LCDS8	Т		ffects pins w D function.	vith multiplex port function		. Dedicated	LCD pins		
LCDS4	Т		ffects pins w D function.	ith multiplex port function		. Dedicated	LCD pins		
LCDS0	Т		ffects pins w D function.	vith multiplex port function		. Dedicated	LCD pins		

LCD_A Port Control Register (1)

LCDAPCTL1, LCD_A Port Control Register 1										
7	6	5	4	3	2	1	0			
		Unu	sed			LCDS36	LCDS32			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0			
Unused	Bits 7–2	Unused								
LCDS36	Bit 1	LCD segment 36 to 39 enable This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function. Multiplexed pins are port functions. Pins are LCD functions								
LCDS32	Bit 0	LCD segment 32 to 35 enable This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function. Multiplexed pins are port functions. Pins are LCD functions								

LCD_A Voltage Control Register (0)

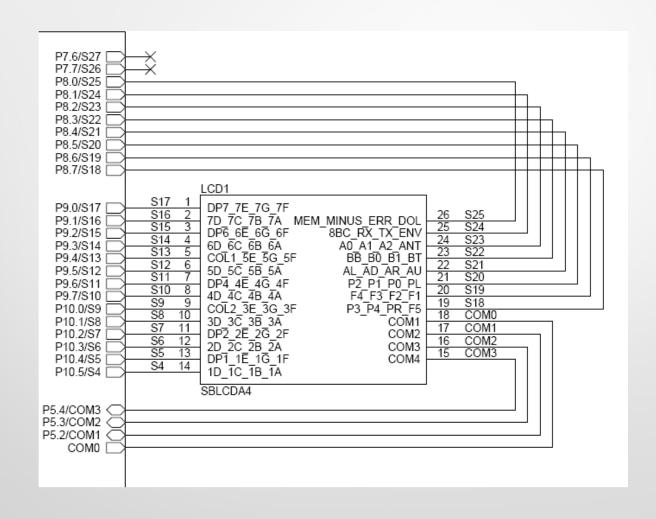
LCDAVCTL0, LCD_A Voltage Control Register 0										
7	6	5	4	3	2	1	0			
Unused	R03EXT	REXT	VLCDEXT	LCDCPEN	VLCD	REFx	LCD2B			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw–0	rw-0			
Unused R03EXT										
HUSEAT		1 1 1 1 1 00								
REXT		generale a montany								
VLCDEXT	Bit 4 V 0 1		select generated in sourced exte							
LCDCPEN	Bit 3 C 0 1	Charge pump enable. Charge pump disabled.								
VLCDREFx	2-1 00	Charge pump reference select 00 Internal 01 External 10 Reserved 11 Reserved								
LCD2B	Bit 0 B 0 1	Bias select. LCD2B is ignored when LCDMx = 00. 0 1/3 bias								

LCD_A Voltage Control Register (1)

7	6	5	4	3	2	1	0		
	Unused	I		VLCDx					
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0		
Unused	Bits 7–5	Unused							
VLCDx	Bits 4–1	Charge pump be enabled. A and VLCDEX 0000 Charge p 0001 V _{LCD} = 2 0010 V _{LCD} = 2 0110 V _{LCD} = 2 0101 V _{LCD} = 2	V_{CC} is used $\Gamma = 0$. pump disable 2.60 V 2.72 V 2.78 V	for V _{LCD} wh					

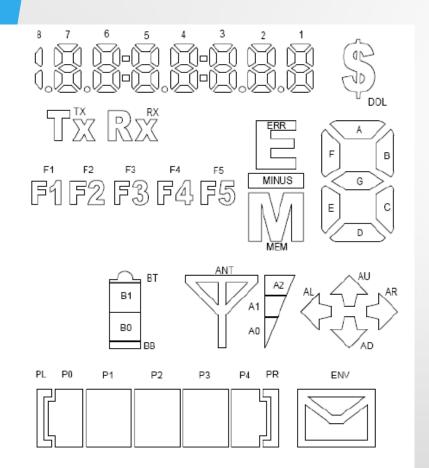
Unused

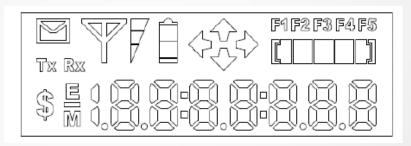
Bit 0

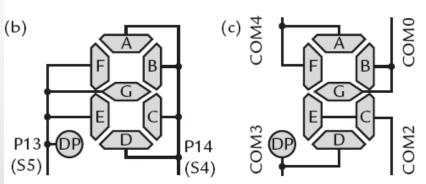

Unused

 $V_{LCD} = 2.90 \text{ V}$ $V_{LCD} = 2.96 \text{ V}$ $V_{LCD} = 3.02 \text{ V}$ $V_{LCD} = 3.08 \text{ V}$ $V_{LCD} = 3.14 \text{ V}$ $V_{LCD} = 3.20 \text{ V}$ $V_{LCD} = 3.26 \text{ V}$ $V_{LCD} = 3.32 \text{ V}$ $V_{LCD} = 3.38 \text{ V}$ $V_{LCD} = 3.44 \text{ V}$

LCDAVCTL1, LCD_A Voltage Control Register 1


DRFG4618 LCD Interface





Softbaugh LCD SBLCDA4: Segment Description

SBLCDA₄ Display

Mapping SBCDA4 segments to MSP430 pites in HUNTSVILLE (TI Experimenter board)

l' I	COM:			2	1	0	3	2	1	0	LCD	MCD420
display memory	MSP430 pin	pin		S _n	+ 1			S	n		LCD pin	MSP430 pin
LCDM13	S25	•	МЕМ	MIN	ERR	DOL	8BC	RX	TX	ENV	P25	S24
LCDM12	S23	P24	A0	A1	A2	ANT	ВВ	ВО	B1	ВТ	P23	S22
:	:	:									:	:
LCDM4	S7	P11	DP2	2E	2G	2F	2D	2C	2B	2A	P12	S6
LCDM3	S5	P13	DP1	1E	1G	1F	1D	1C	1B	1A	P14	S4
		Bit:	7	6	5	4	3	2	1	0		