

CPE 323: Stack Smashing © A. Milenković 1

CPE 323
Stack Smashing (For Fun and No Profit):

An Embedded Computer Systems Example

Aleksandar Milenković
Email: milenka@uah.edu
Web: http://www.ece.uah.edu/~milenka

Objective:
Illustrate a buffer overflow software vulnerability that even embedded systems are not immune
to, and demonstrate how it can be exploited by malicious adversaries to divert system operation

Requirements:
1. A workstation with TI’s Code Composer Studio (CCS).
2. The workstation will need a serial terminal client such as PuTTY

(https://www.putty.org/) or Mobaxterm. In addition, the workstation will need plink, a
command line serial interface to the PuTTY back ends, for the injection example.

3. A TI Experimenter’s Board with MSP430FG4618 microcontroller connected to the
workstation via (a) USB interface through MSP-FET Flash emulation tool and (b) serial
RS232 interface (directly or through USB).

4. The source code of StackSmashing.c demo and BuzzerCodeGNU.bin file in order to
reproduce the walkthrough examples. When creating the project in CCS, use the -
msmall code model, standard ISA, and no compiler optimizations to ensure
compatibility with instructions in the text.

Contents

1 Introduction ... 2

1.1 Example Program (StackSmashing.c) ... 2

1.2 Vulnerability ... 5

1.3 Code Compilation ... 8

1.4 Memory Layout and Stack .. 10

2 Corrupting the Stack .. 11

3 Corrupting the Stack with Redirection .. 13

4 Corrupting the Stack with Code Injection ... 14

5 References ... 16

mailto:milenka@uah.edu

CPE 323: Stack Smashing © A. Milenković 2

1 Introduction

This text will show you an example code that contains a software vulnerability that can be
exploited by a malicious adversary to divert a normal system operation. For demonstration
purposes we will use a stack buffer overflow vulnerability that is very common in C programs
and can be found even in embedded systems. It occurs whenever the index of an array exceeds
its defined boundaries. Activities (intentional or unintentional) that lead to exploiting a stack
buffer overflow vulnerability are known as stack smashing. In this text we will demonstrate
three exploits categorized as corruption, redirection, and code injection.

Section 1.1 introduces StackSmashing.c progam, Section 1.2 describes the buffer overflow
vulnerability, Section 1.3 describes project options in Code Composed that are necessary to
successfully carry out demos described in this text, and Section 1.4 describes the address
maping of regions of interest for the demo code.

1.1 Example Program (StackSmashing.c)

Let us consider a program called StackSmashing.c that executes on the TI Experimenter’s board
connected to a workstation through a RS232 link (57,600 bps, 8-bit, no parity). The program
implements a simple user interface as shown in Figure 1. The program menu offers three
options to the user (1) to toggle LED1 (green), (2) to toggle LED2 (yellow), or (3) to enter a
username. For option (3), the user is asked to enter a name terminated by a special character.
The entered name is then displayed in the next line. The program then prints the original
options menu.

Figure 1. StackSmashing Demo User Interface

CPE 323: Stack Smashing © A. Milenković 3

Figure 2 shows C code implementing the functions described above. The main program
initializes the peripherals (the watchdog timer, USCI, and parallel ports) and enters an infinite
loop where menu options are displayed through the serial port. The processor enters the LPM0
state waiting for a user input. When a new character is received through the serial link (‘1’, ‘2’,
or ‘3’), the USCI ISR is entered. It does the following: (a) reads the character and stores it in the
global variable called currentChar, (b) toggles LED4, and (c) makes sure that processor remains
in the active mode upon return from the ISR. Depending on the menu option selected, code
performs one of the following: toggles LED1, toggles LED2, or prints an additional message that
prompts the user to enter his/her username. The username is entered in the function called
enterName(). Please review entire program and make sure all aspects of this demo are well
understood. A careful reader would notice that statement in line 112 allocates a buffer in RAM
memory called dummyBuffer of 256 bytes. This buffer is not used in the rest of the code except
to make sure some space is allocated on the stack that resides in RAM memory. Its use will be
explained later.

/*** 1
 * File: StackSmashing.c 2
 * 3
 * Description: 4
 * This program is designed to illustrate stack smashing. 5
 * It prompts the user to enter his/her userID 6
 * (up to 6 ASCII characters terminated by an <ENTER> key). 7
 * The subroutine where userID is entered intentionally does not verify 8
 * whether the number of characters entered exceeds the buffer size, 9
 * thus creating a buffer overflow vulnerability in the code. 10
 * This vulnerability can be exploited in several different ways 11
 * as described in the corresponding tutorial. 12
 * 13
 * Board: MSP430FG461x/F20xx Experimenter Board 14
 * Connect to workstation using RS232: 57,600 bps, 8-bit, no parity 15
 * (PuTTY, Plink, MobaXterm, Hyperterminal) 16
 * 17
 * Peripherals: USCI (UART) 18
 * Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO 19
 * 20
 * MSP430FG461x 21
 * ----------------- 22
 * /|\| | 23
 * | | | 24
 * --|RST | 25
 * | P5.1|--> LED4 26
 * | | 27
 * | | 28
 * | P2.1|--> LED2 29
 * | P2.2|--> LED1 30
 * | P2.4|--> TxD (UART) 31
 * | P2.5|<-- RxD (UART) 32
 * | | 33
 * | | 34
 * 35
 * Authors: Homer Lewter 36
 * Alex Milenkovich, milenkovic@computer.org 37
 * Date: 10/15/2018 38
 * 39

CPE 323: Stack Smashing © A. Milenković 4

 40
***/ 41
 42
#include <msp430xG46x.h> 43
 44
// Messages to be displayed 45
char asteriskDivider[] = "\n\n\r**************************"; 46
#define asteriskDividerLen 29 47
char menuMsg[] = "\n\rOptions Menu:\n\r\t1) Toggle LED 1\n\r\t2) Toggle LED 2\n\r\t3) Enter 48
user name\n\r"; 49
#define menuMsgLen 74 50
char optionSelect[] = "\n\rPlease select option <1, 2, or 3>: "; 51
#define optionSelectLen 37 52
char namePrompt[] = "\n\rEnter user name: "; 53
#define namePromptLen 19 54
char nameConfirm[] = "\n\rUser name entered: "; 55
#define nameConfirmLen 21 56
 57
char currentChar; // Receives user input from interrupt 58
 59
// UART Initialization 60
void UART_Initialize() { 61
 P2SEL |= BIT4+BIT5; // Set UC0TXD and UC0RXD to transmit and receive data 62
 UCA0CTL1 |= BIT0; // Software reset 63
 UCA0CTL0 = 0; // USCI_A0 control register 64
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK 65
 UCA0BR0 = 18; // 1048576 Hz / 57,600 lower byte 66
 UCA0BR1 = 0; // Upper byte 67
 UCA0MCTL = 0x02; // Modulation 68
 UCA0CTL1 &= ~BIT0; // UCSWRST software reset 69
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt 70
} 71
 72
// Function to send the elements of a character array to the UART 73
void sendMessage(char* messageArray, int lengthArray) { 74
 int idx; 75
 76
 for(idx=0; idx<lengthArray; idx++) { 77
 //send one by one using the loop 78
 while (!(IFG2 & UCA0TXIFG)); 79
 UCA0TXBUF = messageArray[idx]; 80
 } 81
} 82
 83
void enterName() { 84
 int nameFinished = 0; // Flag for end of name 85
 char nameEntered[6]; // Char array for user input 86
 int nameElement = 0; // Current element of name entered 87
 88
 while (nameFinished == 0){ // Loops until name entry completed 89
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupts 90
 if ((currentChar == 0x1c) || currentChar == '\r' || currentChar == '\n') { 91
 // If any of these characters are detected, consider name entry completed 92
 nameFinished = 1; 93
 sendMessage(nameConfirm, nameConfirmLen); 94
 sendMessage(nameEntered, nameElement); 95
 } 96
 else { 97
 // Else the entered character is added to the name 98
 nameEntered[nameElement] = currentChar; 99
 nameElement++; 100

CPE 323: Stack Smashing © A. Milenković 5

 } 101
 } 102
} 103
 104
int main(void) { 105
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer 106
 UART_Initialize(); 107
 P5DIR |= BIT1; // P5.1 is output 108
 P2DIR |= (BIT1 | BIT2); // P2.1 and P2.2 are output 109
 P2OUT = 0x00; // Clear output port P2 110
 111
 volatile unsigned int dummyBuffer[256]; // ensures room for injection on stack 112
 113
 while(1){ 114
 // Send menu and option prompt 115
 sendMessage(asteriskDivider, asteriskDividerLen); 116
 sendMessage(menuMsg, menuMsgLen); 117
 sendMessage(optionSelect, optionSelectLen); 118
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupts 119
 120
 // Execute option selected by user 121
 if (currentChar == '1'){ 122
 P2OUT ^= BIT2; // Toggle P2.2 for LED1 123
 } 124
 else if (currentChar == '2'){ 125
 P2OUT ^= BIT1; // Toggle P2.1 for LED2 126
 } 127
 else if (currentChar == '3'){ 128
 sendMessage(namePrompt, namePromptLen); 129
 enterName(); // Run name entry function 130
 } 131
 } 132
} 133
 134
// USCI.RX Interrupt Service Routine 135
// TI Compiler or IAR interrupt version 136
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__) 137
#pragma vector=USCIAB0RX_VECTOR 138
__interrupt void USCIA0RX_ISA(void) 139
// gcc interrupt version 140
#elif defined(__GNUC__) 141
void __attribute__((interrupt(USCIAB0RX_VECTOR))) USCIA0RX_ISR (void) 142
#else 143
#error Compiler not supported! 144
#endif 145
{ // ISR body 146
 while(!(IFG2&UCA0TXIFG)); // Wait until can transmit 147
 currentChar = UCA0RXBUF; // Each received char is held for 148
 UCA0TXBUF = currentChar; // TX -> Rxed character 149
 P5OUT^=BIT1; // Toggle Led4 150
 _BIC_SR_IRQ(LPM0_bits); // Clear LPM0 bits from 0(SR) 151
} 152

Figure 2. StackSmashing Demo Program

1.2 Vulnerability

The code briefly outlined above contains one intentional vulnerability that can be exploited to
divert program execution. Before you proceed with reading, try to identify a vulnerability.

CPE 323: Stack Smashing © A. Milenković 6

Let us examine the enterName() function (lines 84-103). It contains local variables
nameFinished (an integer), nameEntered (a character array of 6 elements), and numElement (an
integer). The main loop takes an input character from the variable named currentChar and
stores it into the corresponding element of the character array. The variable numElement
serves as an index of the character array. The end of username is detected when one of the
following ASCII characters is entered (FS=0x1C – file separator, LF=0x0A – new line, or CR=0x0D
– carriage return). If any of these characters is entered, the username confirmation message is
sent through the serial port and the function is exited. Here lays a source of vulnerability. We
anticipate that the username is no longer than six characters, yet our code does not check
bounds to prevent the user from entering more than six characters. Instead, we keep adding
characters into the character array (nameEntered), even when the total number of characters
exceeds six. Anyone who enters more than 6 characters for username is in position to exploit
this vulnerability and divert the normal program operation. In the text that follows we will
illustrate several attacks that exploit this vulnerability in the code. This is an intentional
oversight on our side, but this type of errors exists in many forms and is a cause of several
famous exploits.

It is also helpful to understand assembly code for the vulnerable function (see Figure 3).
Specifically, note that 10 bytes is allocated for local variables in enterName subroutine. They
placed on the stack in the following order: nameFinished (right above the return address),
nameElement, and nameEntered[6].

 82:../StackSmashing.c **** void enterName(){ 1
 141 .loc 1 82 0 2
 142 ; start of function 3
 143 ; framesize_regs: 0 4
 144 ; framesize_locals: 10 5
 145 ; framesize_outgoing: 0 6
 146 ; framesize: 10 7
 147 ; elim ap -> fp 2 8
 148 ; elim fp -> sp 10 9
 149 ; saved regs:(none) 10
 150 ; start of prologue 11
 151 00a0 3180 0A00 SUB.W #10, R1 12
 152 .LCFI1: 13
 153 ; end of prologue 14
 83:../StackSmashing.c **** int nameFinished = 0; // Flag for end of 15
name 16
 154 .loc 1 83 0 17
 155 00a4 8143 0800 MOV.W #0, 8(R1) 18
 84:../StackSmashing.c **** char nameEntered[6]; // Char array for 19
user input 20
 85:../StackSmashing.c **** int nameElement = 0; // Current element 21
of name entered 22
 156 .loc 1 85 0 23
 157 00a8 8143 0600 MOV.W #0, 6(R1) 24
 86:../StackSmashing.c **** 25

CPE 323: Stack Smashing © A. Milenković 7

 87:../StackSmashing.c **** while (nameFinished == 0){ // Loops until name 26
entry completed 27
 158 .loc 1 87 0 28
 159 00ac 3040 0000 BR #.L7 29
 160 .L10: 30
 88:../StackSmashing.c **** _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ 31
interrupts 32
 161 .loc 1 88 0 33
 162 ; 88 "../StackSmashing.c" 1 34
 163 00b0 32D0 1800 bis.w #24, SR { nop 35
 163 0343 36
 164 ; 0 "" 2 37
 89:../StackSmashing.c **** if ((currentChar == 0x1c) || currentChar == '\r' 38
|| currentChar == '\n') { 39
 165 .loc 1 89 0 40
 166 00b6 5C42 0000 MOV.B ¤tChar, R12 41
 167 00ba 7C90 1C00 CMP.B #28, R12 { JEQ .L8 42
 167 0024 43
 168 .loc 1 89 0 is_stmt 0 44
 169 00c0 5C42 0000 MOV.B ¤tChar, R12 45
 170 00c4 7C90 0D00 CMP.B #13, R12 { JEQ .L8 46
 170 0024 47
 171 .loc 1 89 0 48
 172 00ca 5C42 0000 MOV.B ¤tChar, R12 49
 173 00ce 7C90 0A00 CMP.B #10, R12 { JNE .L9 50
 173 0020 51
 174 .L8: 52
 90:../StackSmashing.c **** // If any of these characters are detected, 53
consider name entry completed 54
 91:../StackSmashing.c **** nameFinished = 1; 55
 175 .loc 1 91 0 is_stmt 1 56
 176 00d4 9143 0800 MOV.W #1, 8(R1) 57
 92:../StackSmashing.c **** sendMessage(nameConfirm, nameConfirmLen); 58
 177 .loc 1 92 0 59
 178 00d8 7D40 1500 MOV.B #21, R13 60
 179 00dc 3C40 0000 MOV.W #nameConfirm, R12 61
 180 00e0 B012 0000 CALL #sendMessage 62
 93:../StackSmashing.c **** sendMessage(nameEntered, nameElement); 63
 181 .loc 1 93 0 64
 182 00e4 0C41 MOV.W R1, R12 65
 183 00e6 1D41 0600 MOV.W 6(R1), R13 66
 184 00ea B012 0000 CALL #sendMessage 67
 185 00ee 3040 0000 BR #.L7 68
 186 .L9: 69
 94:../StackSmashing.c **** } 70
 95:../StackSmashing.c **** else { 71
 96:../StackSmashing.c **** // Else the entered character is added to 72
the name 73
 97:../StackSmashing.c **** nameEntered[nameElement] = currentChar; 74
 187 .loc 1 97 0 75
 188 00f2 5D42 0000 MOV.B ¤tChar, R13 76
 189 00f6 0C41 MOV.W R1, R12 77
 190 00f8 1C51 0600 ADD.W 6(R1), R12 78
 191 00fc CC4D 0000 MOV.B R13, @R12 79
 98:../StackSmashing.c **** nameElement++; 80

CPE 323: Stack Smashing © A. Milenković 8

 192 .loc 1 98 0 81
 193 0100 9153 0600 ADD.W #1, 6(R1) 82
 194 .L7: 83
 87:../StackSmashing.c **** _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ 84
interrupts 85
 195 .loc 1 87 0 86
 196 0104 8193 0800 CMP.W #0, 8(R1) { JEQ .L10 87
 196 0024 88
 99:../StackSmashing.c **** } 89
 100:../StackSmashing.c **** } 90
 101:../StackSmashing.c **** } 91
 92
} 93

Figure 3. Assembly Code for nameEntered

1.3 Code Compilation

To repeat attacks described in this text without any modifications, it is important to use the
project settings described below. A different set of settings may require additional tweaks to
achieve effects described in this text. The Mitto Systems GNU compiler is used for code
translation (see Figure 4). Figure 5 shows the Runtime, Optimization, and Miscellaneous
settings.

Figure 4. Properties tab for StackSmashing

CPE 323: Stack Smashing © A. Milenković 9

CPE 323: Stack Smashing © A. Milenković 10

Figure 5. Runtime, Optimization, and Miscellaneous Settings for StackSmashing

1.4 Memory Layout and Stack

Before we describe exploits of the StackSmashing.c program, it is useful to revisit the address
mapping of the MSP430FG4618. The address space map is shown in Table 1. This
microcontroller includes 116 KiB of Flash memory (for code and constants), 8 KiB of RAM
memory, Information memory, Boot memory, 512 bytes reserved for I/O address space. A
portion of address space, last 64 bytes, of the first 64 KiB of address space (0x0FFC0 – 0x0FFFF)
is reserved for the interrupt vector table. A portion of RAM memory (2 KiB) of address space is
mirrored, that is, 2 KiB of RAM memory occupies address ranges 0x00200 – 0x009FF as well as
0x01100 – 0x18FF. In other words, addresses 0x00200 and 0x01100 point to the same physical
location in RAM. If you wonder what is the purpose of the mirrored memory, the reason is a
practical one. Different MSP430 microcontrollers differ in the size of RAM and sometimes it is
useful to allow code compiled for one microcontrller (e.g., one with only 2KiB RAM) executes
on a microcontroller with larger memory (e.g., 8 KiB) without requiring code to be recompiled.

Table 1. Address Space Mapping of MSP430FG4618

Address Space Size Address Range

Flash Total 116 KiB 0x03100 – 0x1FFFF

Interrupt Vector Table 64 B 0x0FFC0 – 0x0FFFF

Code Memory 116 KiB 0x03100 – 0x1FFFF

RAM Total 8 KiB 0x01100 – 0x030FF

Extended 6 KiB 0x01900 – 0x030FF

Mirrored 2 KiB 0x01100 – 0x018FF

CPE 323: Stack Smashing © A. Milenković 11

Information Memory (Flash) 256 B 0x01000 – 0x010FF

Boot Memory (ROM) 1 KiB 0x00C00 – 0x00FFF

RAM Memory (mirrored) 2 KiB 0x00200 – 0x009FF

Peripherals 16 bit 256 B 0x00100 – 0x001FF

8 bit 240 B 0x00010 – 0x000FF

8-bit SFRs 16 B 0x00000 – 0x0000F

The stack in MSP430 is organized at the top of RAM memory, it grows toward lower addresses
in the address space, and the stack pointer points to the last full location on the stack. Initially,
the stack pointer (SP) is initializaed to point to the 0x03100 (part of the startup code), which is

actually the first location in the Flash memory. This ensures that first push operation (SPSP-2;

M[SP]data) stores data on the topmost location of the RAM memory (0x30FE). By analyzing
assembly code and tracking data allocation on the stack, we can outline the content of the
stack. At the beginning of the main program, SP=0x030FE. In the main we allocate 512 B for a
dummyBuffer (0x2EFE-0x30FC). The only purpose of this allocation is to create some space on
the stack where code could be injected. Remember, the Flash memory during normal program
execution behaves as ROM (read only memory) and any writes into regions that belong to the
Flash memory have no effect. Note: In-system-programming of the Flash memory is possible,
but it has to go through a Flash memory controller. The instruction CALL in the main is going to
push the return address in the main program. Inside the enterName() function local variables
nameFinished, nameElement, and the character array (nameEntered[6]) are allocated on the
stack as shown in Table 2. Now, when we understand the stack content, we are ready to move
to the next step and dig deep into how to exploit the vulnerability.

Table 2. Content of the Stack when Executing enterName()

Address Range Size Data (variables) Comment

0x030FEh 2 B Filled by start-up code 0x31F6

0x02EFE - 0x030FC 512 B uint dummyBuffer[256] Storage for dummyBuffer (space for injection)

002EFC 2 B Return Address Return address pushed when calling enterName

0x02EFA 2 B int nameFinished Local variable / flag to detect end

0x02EF8h 2 B int nameElement Local variable / index in the nameEntered

0x02EF2 – 0x02EF6 6 B char nameEntered[6] Local array to hold username entered

2 Corrupting the Stack

In this example we are simply going to enter a username that exceeds the length of six
characters. Let us enter “Roberto” followed by a return. Please note that the username
contains seven characters. Figure 6 shows the interaction captured from PuTTY. The output is
quite unexpected. How can we explan that?

************************** 1
Options Menu: 2
 1) Toggle LED 1 3
 2) Toggle LED 2 4

CPE 323: Stack Smashing © A. Milenković 12

 3) Enter user name 5
 6
Please select option <1, 2, or 3>: 3 7
Enter user name: Roberto 8
User name entered: Robertp▒4▒9 ▒<~▒/)▒)▒▒▒43▒ttD 9
 ▒E▒▒TLe$bK▒ 10
 ▒ 11
 12
 ▒▒▒▒ 13
▒▒]̠▒ ; @▒▒a@62▒▒A*"▒',▒KD&pPTJZ▒!▒ 14
 15
************************** 16
Options Menu: 17
 1) Toggle LED 1 18
 2) Toggle LED 2 19
 3) Enter user name 20
 21
Please select option <1, 2, or 3>: P 22
 uTTY 23
****PuTTY********************** 24
Options Menu: 25
 1) Toggle LED 1 26
 2) Toggle LED 2 27
 3) Enter user name 28
 29
Please select option <1, 2, or 3>: 30
 31

Figure 6. Program Operation with Corrupted Stack.

To understand what exactly happened, we can look at Table 2 and see what was being stored in
memory after the end of the space allocated for the character array. The stack had space for an
integer value in the next higher memory address, and that integer was being used by the
function as the current offset to the character array for storing the next user supplied
character. When an unexpected 7th character was supplied by the user, it was stored in the
lower 8 bits of the integer offset variable (nameElement). The ASCII value for the seventh
character 'o', 111 or 0x69, is thus stored in lower 8 bits of nameElement, and then that variable
is incremented by one. So, when the user was done entering his/her name
(numElement=0x0070, nameFinished=1). The follow-up function sendMessage(nameEntered,
nameElement) is called to display the username. However, since it has the erroneous value 112
stored in numElements, the sendMessage() function sends 112 bytes starting at the base
address of the nameEntered character array. It happens that uninitialized data from the
dummyBuffer is stored in memory at an address in reach of that 112 byte span. The gibberish
after the 6th character is data from the stack that was attempted to be read as a character
array. By changing the main program to initialize dummyBuffer with a printable character, you
would be able to see less random gibberish.

Trying various inputs will result in similar results. The main reason this corruption example does
not have more severe effects on the functionality of the program is that the return address is
not likely to be overwritten. The reason is that when the integer value for the offset is
overwritten (nameElement) using standard alphanumeric ASCII values, the offset is likely to be

CPE 323: Stack Smashing © A. Milenković 13

relatively large placing the next address to be overwritten much higher in the address space,
above the return address.

It is important to note that if one were to enter a large amount of text, that there is still no
danger of it overwriting the actual program code which resides in the Flash memory that
cannot be overwritten by executing simple MOV instructions.

3 Corrupting the Stack with Redirection

The next example of stack smashing goes one step further. We can use the fact that this
program has the vulnerability of no bounds checking, to give specific values that will change the
functionality of the program. With stack smashing, we can redirect the program flow to another
section of the executable code rather than returning to the main loop as intended. This way we
will divert the code execution from its normal flow.

Now that we know the 7th character we enter will affect the offset to the character array, we
can enter a value that will let us modify the return address next. Looking at Table 3, we can see
the stack pointer is 10 Bytes away from the base address of the character array. Therefore, if
we enter the value 9 as our 7th character, it will be incremented by one to 10 and cause the
next two characters we type to be saved on the stack where the original return address is
stored.

Fortunately for us, the ASCII value for 9 is the 'tab' key. After typing any 6 characters, hitting tab
will cause the offset to be ready for us to enter the next character into the return address lower
byte. Knowing that the instruction to toggle LED1 starts at address 0x3456, we enter an upper
case 'V' which has the value 56h on the ASCII table. Then we enter the number '4' which is 0x34
in the ASCII table for the upper byte of the return address.

Table 3. Content of the Stack when Executing enterName()

Address Range Size Data (variables) Original Value New Value

0x030FEh 2 B - 0x31F6 0x31F6

0x02EFE - 0x030FC 512 B uint dummyBuffer[256] - -

002EFC 2 B Return Address 0x349E 0x3456

0x02EFA 2 B int nameFinished 1 1

0x02EF8h 2 B int nameElement 6 12

0x02EF2 – 0x02EF6 6 B char nameEntered[6] ‘123456’ ‘123456\tV4’

Hitting enter upon finishing the name entry will cause the function to return. However, the
return address is not the original one placed by the CALL instruction in the main program when
enterName() function is invoked (x0349E). Rather, its new value is x3456 and we will return to
the portion of the code in the main where LED1 is toggled without us having had to select
option 1 from the main menu. This is a clear case of diverting expected program flow.

CPE 323: Stack Smashing © A. Milenković 14

Note: keep in mind that attackers do not have to have an access to the source code. With
ample time on his/her hand and some knowledge of the MSP430 architecture, they can simply
try different usernames and observe program behavior to determine what their next step
should be.

While this diversion may seem inconsequential for this program, there are ample opportunities
that other pieces of software could fall prey to from this type of attack. Imagine if option 1 from
the menu had been a password protected function and one could access the unprotected
public option 3 and thereby gain access to option 1's function bypassing the authentication
step. The pitfalls of improper bounds checking becomes more apparent.

4 Corrupting the Stack with Code Injection
The last example of stack smashing lets us inject our own code into the program for execution.
The basic idea is to enter values that could be interpreted as instructions if the return address is
changed to point back to the values we previously entered instead of being redirected to
already existing code. There are two primary concerns in being able to achieve this type of
attack. First, the code that we wish to inject may have values that are not found in the ASCII
table (extended or otherwise). Second, there needs to be enough room available for the
injected code on the stack.

The first concern can be addressed for this example by using the command line serial interface
client tool called plink. It was developed by the same developer as PuTTY, but was not intended
for interactive usage. We will use the same serial interface we have been using to select menu
options. When we trigger the function to ask for the user input of a name, we can disconnect
the terminal and then activate the plink command from a command prompt.

The second concern of stack space was addressed by adding a dummyBuffer array in the main()
function which guaranteed ample space at higher addresses on the stack. Another option could
be changing the offset to the character array to a negative value, causing the following user
inputs to be targeted to unused memory areas at lower RAM addresses for storing the desired
user supplied code, and then doing a second round of name entry that just changes the stack
pointer to the newly saved code.

To begin, the desired code for injection needs to be prepared in advance (see Figure 7). The
supplied BuzzerCodeGNU.bin is a binary file that has 64 bytes of instructions in little endian
format. It was prepared by writing a short snippet of code that activates the buzzer on the
MSP430. Then that code was entered into Notepad++ with a hex editor plugin. This allows for
some of the bytes to be null or to have values that are problematic to be sent directly using
keybord.

The first 6 bytes are arbitrary values to fill up the character array buffer. The following byte,
circled in black, is the modifier to the nameElement offset to send the following byte to the

CPE 323: Stack Smashing © A. Milenković 15

lower byte of the return address that resides on the stack. The value in yellow, 0x2F16, is the
address of the start of the actual buzzer code (circled in green) which follows and will end up in
the dummyBuffer address space. This new return address displaces the orginal one placed by
the CALL instruction in the main program. So, when the function returns, the changed return
address is moved to PC, ensuring execution of the injected code. The code in green shows a
portion of the injected code that activates the buzzer. Figure 8 shows its disassembly view. The
code in blue displays a portion of the injected code to print the final message after executing
the injected code. At the end of the buzzer code is a branch instruction, circled in red below,
that points to itself causing an infinite loop that stops the program from functioning further.The
last byte of the BuzzerCodeGNU.bin is 0x1C, ASCII code for 'file separator'. Its purpose is to
trigger the end of name entry for the function enterName() to return without having to
reconnect via MobaXterm to finish the demonstration.

Note: The injected code has to make use of different registers than what may have been used
by default by the compiler. This way, we avoid having any byte values that would end the name
entry function by happenstance, such as 0Dh, 0Ah, and 1Ch.

Figure 7. Injected Code from BuzzerCodeGNU.bin: HEX Editor View

Figure 8. Injected Code for Activating Buzzer: A Disassembly View

CPE 323: Stack Smashing © A. Milenković 16

Figure 9. Injected Code for Displaying A Final Message: A Disassembly View.

With plink installed and the BuzzerCodeGNU.bin file in the same directory that plink will be
called from, we are ready to perform the code injection. Run the StackSmashing program and
select option 3 to enter a username. Instead of entering anything, close the terminal program
so that the serial connection is not in use. Windows will block plink from opening a serial
connection to the same COM port, if it is already in use. Open a command prompt and navigate
to the directory that contains plink and the BuzzerCode.bin file. The COM port may vary by
workstation, but will be the same one used to connect previously. The command for sending
the file via plink is as follows and the observed output is shown below.

> plink -serial COM6 -sercfg 57600,8,1,n,N < BuzzerCodeGNU.bin
Smash! /Tinnitus is no joke \B|╨ <≡ ┬L\B|╨ <≡ ┬L ▓@Ç è▓@Ç▓@êÆ}@6@/x@
 CWB g≤ô√'SΓFg ¥⌠;0@l/
User name entered: Smash!~ /Tinnitus is no joke \B|╨ <≡ ┬L\B|╨ <≡ ┬L ▓@Ç
è▓@Ç▓@êÆ}@6@/x@ CWB
g≤ô√'SΓFg ¥⌠;0@l/Tinnitus is no joke

If everything went as planned, there should be an annoying beeping plaguing the room now. As
the code was injected, there is no menu option to turn it off. Resetting the MSP430 will be
necessary to end the noise.

5 References
1. "Hexadecimal Object File Format Specification." Intel. Published 6 Jan, 1988. Revision A.

Retrieved from
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/ads264_mws22
8/Final%20Report/Final%20Report/Intel%20HEX%20Standard.pdf. Accessed 29 May, 2018.

CPE 323: Stack Smashing © A. Milenković 17

2. "Instruction Set Summary." Texas Instruments. Retrieved from
https://www.ti.com/sc/docs/products/micro/msp430/userguid/as_5.pdf. Accessed 12 June
2018.

3. "MSP430x4xx Family User's Guide" Texas Instruments. Published December 2013. Revised
December 2017. Retrieved from http://www.ti.com/lit/ug/slau056l/slau056l.pdf. Accessed
22 May, 2018.

4. "MSP430xG461x Mixed Signal Microcontroller." Texas Instruments. Published April 2006.
Revised March 2011. Retrieved from http://www.mouser.com/ds/2/405/slas508i-
116258.pdf. Accessed 29 May, 2018.

