Measuring Program Execution Time

/**

** Notes on Program Execution Time Measurements on Linux/Unix/Solaris
k%

** Intended audience: Those who would like to learn more about
** measuring program execution time in modern computer systems.

* %

** Used: CPE 631 Advanced Computer Systems and Architectures

ok CPE 619 Modeling and Analysis of Computer and Communication Systems
* %

** ver 0.1, Spring 2007 notes on performance measurements (Solaris)

** ver 0.2, Spring 2011 updated notes on program execution time measurements (Linux)
** ver 0.3, Spring 2012 updates for execution time measurements in Linux

* %k

** @Aleksandar Milenkovic, milenkovic@computer.org
**/

Program Execution Time Measurements

Let us start with a simple C program that sums up elements of an integer array.
The program initializes the elements randomly and then sums them up and prints the result.
We would like to measure the program execution time.

* Copy this directory into your current directory.

D iy - e T I

[milenka@ebl36i-nsf02] cp -r /opt/arch.tut/exetimemeasure

1 Using the date command

* To learn more about the date command type in man date.

QLN NI NI NI N N NS NI N N N N NN N NI S N N N NI R ~

[milenka@ebl36i-nsf02 exetimemeasure]$ man date

* Inspect the code in file arrsum.c.

* Compile the code using gcc with 02 optimization level.

QLI NI N S N NI N NN NI N NI NSNS NI N A VLV V)

[milenka@ebl36i-nsf02 exetimemeasure]$ gcc -02 arrsum.c -O arrsum.exe

Measuring Program Execution Time

* Measure time using the date command as follows.

QLI N NN N N NS NSNS N N N NSNS N N NN N 30 N N N NI NS NI NS N N N N NSNS I NS NS NS I NI 0

[milenkaRebl36i-nsf02 exetimemeasure]$ date && ./arrsum.exe 1024 && date
Thu Jan 19 08:38:46 CST 2012

array sum is 1114356211233.000000

Thu Jan 19 08:38:46 CST 2012

LI VL VY NUNTNTNT VY NTNTNT VT ~A ~asA B SN

In this example we get the date&time before the execution of the program (08:38:46) and after
execution of the program (08:38:46). Time resolution for the date utility is 1 second, and the arrsum
program takes far less time than 1 second to complete. Actually, this utility would not be useful even if
we use much larger arrays. For example, if we use 1 million elements instead of 1024, we still cannot see
the difference. However, if your program takes more time than 1 second, you will be able to observe
differences in time and to determine program execution time.

QLN NI N NI NN N NN NN N NI S NI N N N NI S IS N NI NI NN NI N NI NI I

[milenka@ebl36i-nsf02 exetimemeasure]$ date && ./arrsum.exe 1000000 && date
Thu Jan 19 08:40:39 CST 2012

array sum is 1073756018481283.000000

Thu Jan 19 08:40:39 CST 2012

Note: An alternative is that you invoke multiple instances of your program (e.g., 100,000 times) and
measure time it takes to execute these instances as a standalone program. For example, you can have a
loop that repeats your task as many times as you want. By dividing the elapsed time with the number of
repetitions of your task, you can get an estimated execution time for your task.

2 Using the time command

* To learn more about the time utility type in man time.

LI SN I I N NS NI N N NI S NS NI NI SN O NI RS S NSNS NI NI NSRS NI NI

[milenka@Rebl36i-nsf02 exetimemeasure]$ man time

QLN NI NI NI N N N NI N N N N NN N NI SN NI N NI R ~

* A better alternative for measuring time is using the time utility. The time utility prints a message with
time statistics about the program run, including

(i) the elapsed real-time between the program invocation and termination

(ii) the user CPU time, and

(iii) the system CPU time.

* Examples of using time are given below:

QLIS NI NI SN NN NI SN NI NI NI NSNS N N NI S N NI RS N NS NI IS N NI NI RIS NI NI NI NI S

[milenka@Rebl36i-nsf02 exetimemeasure]$ time arrsum.exe 1024
array sum is 1114356211233.000000

Measuring Program Execution Time

real Om0.002s
user Om0.001s
sys Om0.001s

[milenka@ebl36i-nsf02 exetimemeasure]$ time arrsum.exe 2048
array sum is 2205247217316.000000

real Om0.002s
user Om0.001s
sys Om0.001s

* By using the maximum number of elements we can see a change in execution time.

[milenka@ebl36i-nsf02 exetimemeasure]$ time arrsum.exe 1048576
array sum is 1125894353321862.000000

real Om0.020s
user Om0.017s
sys Om0.003s

3 Using the clock() function

We often want to measure execution time for a certain program section.
The clock() function allows us to do so.

* To learn more about the clock() function type in man clock.

* Below is a typical program template for using the clock() function.

ddeidccddcddceadacdedeeccdcidcdddacdedeedcdeddcdeddacdedeicecdaciccicdacideideicciciaeiccicccd
#include <ctime.h>

int main(void) {

clock t start time, finish time;

// determine overhead
start time = clock();
finish time = clock();
double delay time = (double) (finish time - start time);

Measuring Program Execution Time

start time = clock();

...// code you want to determine the execution time for
finish time = clock();

double elapsed time = finish time - stat time - delay time;

double elapsed time sec = elapsed time/CLOCKS_PER_SEC;

}
ddddadddagddddaddddddadadadddddddddadaddadadadgdaddddaddaadadddaeceadaeceaeacdee

* Inspect arrsum_clock.c program that is a modified version of arrsum.c. You will see that the critical
loop that sums up the elements of the array is repeated many times (constant REPEATS is set to
100,000).

* Compile the program as follows:

[milenka@ebl36i-nsf02 exetimemeasure]$./arrsum_clock.exe 16384
Clock ticks per second: 1000000

Loop overhead in clock ticks = 0.000000

Array sum is 1748829075018089216.000000

Execution time for sum-up array loop in clock ticks is 19.800000
Execution time for sum-up array loop in seconds is 0.000020

We can conclude that loop to sum-up elements of an array with 16,384 integers takes around 19.8 us on
our machine.

It is often useful for engineers to be able to quickly estimate time without using measurements like in
this example. Let us try to estimate execution time for this loop. We have 16,384 iterations; let us
assume that one iterations requires 5 instructions (actually you can generate assembly code and see
implementation of the critical loop). It is likely that critical path is created on the statement "sum = sum
+ mydatali]" and we can reasonably assume that approximately 4 CPU clock cycles will be spent per one
iteration. The entire execution time is then 16384*4cc*(1/2.93 GHz) = 22 us.

The number is not far away from what we have measured.

4 Using the gettimeofday function

* To learn more about this function type in man gettimeofday.

[milenka@ebl36i-nsf02 exetimemeasure]$ man gettimeofday

Measuring Program Execution Time

The function gettimeofday returns two integers.
The first one indicates the number of seconds from January 1, 1970
and the second returns the number of microseconds since the most recent second boundary.

* Below is a sample program that uses gettimeofday().

deciclcclacdcecacideiceiccclaeiccicdacideiccicldeideicciciacideicciciceldeicciciacic el el eIl el
#include <stdio.h>
#include <sys/time.h>

struct timeval start, finish ;
int msec;

int main ()
{
gettimeofday (&start, NULL);
sleep (200); /* wait ~ 100 seconds */

gettimeofday (&finish, NULL);

msec = finish.tv sec * 1000 + finish.tv_usec / 1000;
msec -= start.tv_sec * 1000 + start.tv usec / 1000;

printf ("Time: %d milliseconds\n", msec);

}
ddddadddaddddadddddddadaddaddddddddddadddddadaddaddddaddaadaaedaeadadedaecedcee

* This utility is useful for measuring execution times of tasks that take a lot of time to complete.

The clock() function overflows depending on the length of clock t. For example, if CLOCKS _PER_SEC is
1,000,000 and clock_t is 32-bit, the overflow will occur every 2232/1,000,000 seconds, which is
approximately every 72 hours.

5 Using PAPI

See LaCASA PAPI notes and PAPI documentation.

6 Using perf

See LaCASA PERF notes and perf documentation.

