Measuring Program Execution Time

JRFFFA AR R KRR R R Rk sk sk R KRR R R R R R R R ok o

** Notes on Program Execution Time Measurements on Linux/Unix/Solaris
k%

** Intended audience: Those who would like to learn more about
** measuring program execution time in modern computer systems.

%k %k

** Used: CPE 631 Advanced Computer Systems and Architectures

*k CPE 619 Modeling and Analysis of Computer and Communication Systems
%k %k

** ver 0.1, Spring 2007 notes on performance measurements (Solaris)

** ver 0.2, Spring 2011 updated notes on program execution time measurements (Linux)

** ver 0.3, Spring 2012 updates for execution time measurements in Linux

** ver 0.4, Spring 2018 updates for execution time measurements on blackhawk (runs CentOS 6.9)

** ver 0.5, Fall 2020 updates for execution time measurements on blackhawk (runs Red Hat Enterprise
Linux Server release 7.8 (Maipo)

** @Aleksandar Milenkovic, milenkovic@computer.org
**/

Program Execution Time Measurements

Let us start with a simple C program that sums up elements of an integer array.
The program initializes elements randomly and then sums the elements and prints the result.
We would like to measure program execution time.

* Copy this directory into your current directory.

-bash-4.1$ cp -r /apps/arch/arch.tut/exetimemeasure .
-bash-4.2$ cd exetimemeasure/

1 Using the date command

* To learn more about the date command type in man date.

QLI NI N S N NI N NN NI N NI NSNS NI N A VLV V)

-bash-4.1$ man date

* Inspect the code in file arrsum.c.

* Compile the code using gcc with 02 optimization level.

Measuring Program Execution Time

-bash-4.1$ gcc -02 arrsum.c -0 arrsum.exe

-bash-4.2$ date && ./arrsum.exe 1024 && date
Wed Aug 26 13:31:05 CDT 2020

array sum is 1114356211233

Wed Aug 26 13:31:05 CDT 2020

In this example we get the date&time before the execution of the program (13:31:05) and after
execution of the program (13:31:05). Time resolution for the date utility is 1 second, and the arrsum
program takes far less time than 1 second to complete. Actually, this utility would not be useful even if
we use much larger arrays. For example, if we use 1 million elements instead of 1024, we still cannot see
the difference. However, if your program takes more time than 1 second, you will be able to observe
differences in time and to determine program execution time.

-bash-4.2$ date && ./arrsum.exe 1000000 && date
Wed Aug 26 13:32:42 CDT 2020
array sum is 1073756018481283
Wed Aug 26 13:32:42 CDT 2020

Note: An alternative is that you invoke multiple instances of your program (e.g., 100,000 times) and
measure time it takes to execute these instances as a standalone program. For example, you can have a
loop that repeats your task as many times as you want. By dividing the elapsed time with the number of
repetitions of your task, you can get an estimated execution time for your task.

2 Using the time command

* To learn more the time utility type in man time.

* A better alternative for measuring time is using time utility. The time utility prints a message with time
statistics about the program run, including

(i) the elapsed real-time between the program invocation and termination

(ii) the user CPU time, and

(iii) the system CPU time.

* Examples of using time are given below:

Measuring Program Execution Time

-bash-4.1$ time arrsum.exe 1024
array sum is 1114360406973

real Om0.001s
user Om0.000s
sSys Om0.000s

-bash-4.1$ time arrsum.exe 2048
array sum is 2205251413056

real Om0.001s
user Om0.000s
sys Om0.000s

-bash-4.1$ time arrsum.exe 1048576
array sum is 1125894357517602

real Om0.011ls
user Om0.010s
sys Om0.000s

3 Using the clock() function

We often want to measure time execution time for a certain program section.
The clock() function allows us to do so.

* To learn more about the clock() function type in man clock.

* Below is a typical program template for using the clock() function.

ddeidccdcdedadacddedeecdccdaedcddadaddeddecdadcddcddcdddaddddeaecddcdccdaddedeiccicdacidectdcd
#include <ctime.h>

int main(void) {

clock t start time, finish time;

// determine overhead
start time = clock();
finish time = clock();
double delay time = (double) (finish time - start time);

Measuring Program Execution Time

start time = clock();

...// code you want to determine the execution time for
finish time = clock();

double elapsed time = finish time - stat time - delay time;

double elapsed time sec = elapsed time/CLOCKS PER SEC;

}
ddddadddagddddaddddddadadadadddddddadddadadaddaddddddaadddadaadagaaeaeaeadee

* Inspect arrsum_clock.c program that is a modified version of arrsum.c. You will see that the critical
loop that sums up the elements of the array is repeated many times (constant REPEATS is set to
100,000).

* Compile the program as follows:

-bash-4.2$./arrsum clock.exe 16384

Clock ticks per second: 1000000

Loop overhead in clock ticks = 0.000000

Array sum is 1748829074928900000

Execution time for sum-up array loop in clock ticks is 6.300000
Execution time for sum-up array loop in seconds is 0.000006

We can conclude that loop to sum-up elements of an array with 16,384 integers takes around 6.3 us on
our machine.

It is often useful for engineers to be able to quickly estimate time without using measurements like in
this example. Let us try to estimate execution time for this loop. We have 16,384 iterations; let us
assume that one iteration of the for loop requires 5 instructions (actually you can generate assembly
code and see implementation of the critical loop). It is likely that critical path is created on the
statement "sum = sum + mydatali]" and we can reasonably assume that approximately 2 cpu clock
cycles will be spent per one iteration. The entire execution time is then 16384*2cc*(1/2.6 GHz) = 12.6
us.

The number is not far away from what we have measured. Well, if we assume that the loop takes just a
single-clock cycle we will get actually absolutely correct result.

Note: to see details about processor powering blackhawk, including the clock frequency, use the
following utility:

Measuring Program Execution Time

processor : 0

vendor id : GenuinelIntel

cpu family)

model : 85

model name : Intel (R) Xeon(R) Gold 6126 CPU @ 2.60GHz
stepping : 4

microcode : 0x2000065

cpu MHz :2991.809

cache size : 19712 KB

physical id : 0

siblings : 24

core id : 0

cpu cores : 12

apicid : 0

initial apicid : O

fpu : yes

fpu exception : yes

cpuid level : 22

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat

pse36 clflush dts acpli mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm
constant tsc art arch perfmon pebs bts rep good nopl xtopology nonstop tsc aperfmperf
eagerfpu pni pclmulgdg dtes64 monitor ds cpl vmx smx est tm2 ssse3 sdbg fma cxl6 xtpr
pdcm pcid dca ssed4 1 ssed4 2 x2apic movbe popcnt tsc deadline timer aes xsave avx fl6c
rdrand lahf lm abm 3dnowprefetch epb cat 13 cdp 13 1nvpc1d SLHgle intel ppin intel pt
ssbd mba ibrs ibpb stibp tpr shadow vnmi flexpriority ept vpid fsgsbase tsc adjust
bmil hle avx2 smep bmi2 erms invpcid rtm cqgm mpx rdt a avx512f avx512dq rdseed adx
smap clflushopt clwb avx5l2cd avx512bw avx512v]l xsaveopt xsavec xgetbvl cgm 1llc

cqgm _occup_llc cqgm mbm total cqgm mbm local dtherm ida arat pln pts pku ospke md clear
spec_ctrl intel stibp flush 11d

bogomips " 5200.00

clflush size : 64

cache alignment : 64

address sizes : 46 bits physical, 48 bits virtual

power management:

processor HE

vendor id : GenuinelIntel

cpu family E L6

model A "5

model name : Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
stepping H

microcode : 0x2000065

cpu MHz : 3558.813

How many processor cores does blackhawk have?
What is the size of main memory? Hint: use $ cat /proc/meminfo.

4 Using the gettimeofday function

* To learn more about this function type in man gettimeofday.

Measuring Program Execution Time

The function gettimeofday returns two integers.
The first one indicates the number of seconds from January 1, 1970
and the second returns the number of microseconds since the most recent second boundary.

* Below is a sample program that uses gettimeofday().

clelcereieleeieieleicieleicicieleicieleercieieicieieieicieleicicicieicieleiercieleicieielereielecicieleicicieiercielelciciel ercielelc
#include <stdio.h>
#include <sys/time.h>

struct timeval start, finish ;
int msec;

int main ()
{
gettimeofday (&start, NULL);

sleep (200); /* wait ~ 100 seconds */
gettimeofday (&finish, NULL);

msec = finish.tv_sec * 1000 + finish.tv_usec / 1000;
msec -= start.tv_sec * 1000 + start.tv_usec / 1000;

printf ("Time: %d milliseconds\n", msec);
}
(QRQREECEQRLECQRLECLRLECRLECLRLECLRLEELCLRLALCLELELCLRLELRLRLELRLRLELRLRLEQRLRLEQRLLCEQRLEEQRQEEE

* This utility is useful for measuring execution times of tasks that take a lot of time to complete.

The clock() function overflows depending on the length of clock_t. For example, if CLOCKS _PER_SEC is
1,000,000 and clock_t is 32-bit, the overflow will occur every 2232/1,000,000 seconds, which is
approximately every 72 hours. Also, be careful when using clock() in parallel programs.

5 Using PAPI

See the LaCASA Getting Started with PAPI page at
http://lacasa.uah.edu/portal/index.php/tutorials/34-getting-started-with-papi and PAPI documentation.

6 Using perf
See the LaCASA PerfTool tutorial at http://lacasa.uah.edu/portal/index.php/tutorials/28-perf-tool and
perf documentation.

http://lacasa.uah.edu/portal/index.php/tutorials/34-getting-started-with-papi
http://lacasa.uah.edu/portal/index.php/tutorials/28-perf-tool

