
Performance Measurements: Perf Tool

1

/**
** Notes on Linux perf tool
**
** Intended audience: Those who would like to learn more about
** Linux perf performance analysis and profiling tool.
**
** Used: CPE 631 Advanced Computer Systems and Architectures
** CPE 619 Modeling and Analysis of Computer and Communication Systems
**
** ver 0.1, Spring 2012
** ver 0.2, Spring 2018
** ver 0.3, Spring 2021
**
** @Aleksandar Milenkovic, milenkovic@computer.org
**/

Perf Tool: Performance Analysis Tool for Linux

1. Introduction

Perf is a profiler tool for Linux 2.6+ based systems that abstracts away CPU hardware differences in
Linux performance measurements and presents a simple command line interface. It covers hardware
level (CPU/PMU, Performance Monitoring Unit) features and software features (software counters,
tracepoints) as well.

To learn more about perf type in man perf.
<<~~~

-bash-4.2$ man perf

-bash-4.2$ $ man perf-stat

-bash-4.2$ $ man perf-top

...

Note before the start, do the following to enable devtoolset-6

-bash-4.2$ scl enable devtoolset-6 bash

You can verify that you are using the right environment

-bash-4.2$ bash-4.2$ which gcc

/opt/rh/devtoolset-6/root/usr/bin/gcc

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

2. Commands 
 
The perf tool offers a rich set of commands to collect and analyze performance and trace data.  
The command line usage is reminiscent of git in that there is a generic tool, perf, which implements a set 
of commands: stat, record, report, [...]. 
 



Performance Measurements: Perf Tool 

2 

* To see the list of all options, please type in perf. 
 
<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-bash-4.2$ $ perf 

 

 usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS] 

 

 The most commonly used perf commands are: 

   annotate        Read perf.data (created by perf record) and display annotated code 

   archive         Create archive with object files with build-ids found in perf.data     

file 

   bench           General framework for benchmark suites 

   buildid-cache   Manage build-id cache. 

   buildid-list    List the buildids in a perf.data file 

   data            Data file related processing 

   diff            Read perf.data files and display the differential profile 

   evlist          List the event names in a perf.data file 

   inject          Filter to augment the events stream with additional information 

   kmem            Tool to trace/measure kernel memory properties 

   kvm             Tool to trace/measure kvm guest os 

   list            List all symbolic event types 

   lock            Analyze lock events 

   mem             Profile memory accesses 

   record          Run a command and record its profile into perf.data 

   report          Read perf.data (created by perf record) and display the profile 

   sched           Tool to trace/measure scheduler properties (latencies) 

   script          Read perf.data (created by perf record) and display trace output 

   stat            Run a command and gather performance counter statistics 

   test            Runs sanity tests. 

   timechart       Tool to visualize total system behavior during a workload 

   top             System profiling tool. 

   probe           Define new dynamic tracepoints 

   trace           strace inspired tool 

 

 See 'perf help COMMAND' for more information on a specific command. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 


* Certain commands require special support in the kernel and may not be available. To obtain the list of
options for each command, simply type the command name followed by -h, e.g.:

<<~~~

-bash-4.2$ $ perf stat -h

Usage: perf stat [<options>] [<command>]

 -a, --all-cpus system-wide collection from all CPUs

 -A, --no-aggr disable CPU count aggregation

 -B, --big-num print large numbers with thousands' separators

 -C, --cpu <cpu> list of cpus to monitor in system-wide

 -c, --scale scale/normalize counters

 -D, --delay <n> ms to wait before starting measurement after program start

 -d, --detailed detailed run - start a lot of events

 -e, --event <event> event selector. use 'perf list' to list available events

 -G, --cgroup <name> monitor event in cgroup name only

 -g, --group put the counters into a counter group

 -I, --interval-print <n>

 print counts at regular interval in ms (overhead is possible

for values <= 100m

 -i, --no-inherit child tasks do not inherit counters

 -M, --metrics <metric/metric group list>

 monitor specified metrics or metric groups (separated by ,)

Performance Measurements: Perf Tool

3

 -n, --null null run - dont start any counters

 -o, --output <file> output file name

 -p, --pid <pid> stat events on existing process id

 -r, --repeat <n> repeat command and print average + stddev (max: 100,

forever: 0)

 -S, --sync call sync() before starting a run

 -t, --tid <tid> stat events on existing thread id

 -T, --transaction hardware transaction statistics

 -v, --verbose be more verbose (show counter open errors, etc)

 -x, --field-separator <separator>

 print counts with custom separator

 --append append to the output file

 --filter <filter>

 event filter

 --interval-clear clear screen in between new interval

 --interval-count <n>

 print counts for fixed number of times

 --log-fd <n> log output to fd, instead of stderr

 --metric-only Only print computed metrics. No raw values

 --no-merge Do not merge identical named events

 --per-core aggregate counts per physical processor core

 --per-die aggregate counts per processor die

 --per-socket aggregate counts per processor socket

 --per-thread aggregate counts per thread

 --post <command> command to run after to the measured command

 --pre <command> command to run prior to the measured command

 --smi-cost measure SMI cost

 --table display details about each run (only with -r option)

 --timeout <n> stop workload and print counts after a timeout period in ms

(>= 10ms)

 --topdown measure topdown level 1 statistics

(END)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

3. Events 
 
The perf tool supports a list of measurable events. The tool and underlying kernel interface can measure 
events coming from different sources. For instance, some events are pure kernel counters; in this case 
they are called software events. Examples include: context-switches, minor-fault.  
Another source of events is the processor itself and its Performance Monitoring Unit (PMU). It provides 
a list of events to measure micro-architectural events such as the number of cycles, instructions retired, 
L1 cache misses and so on. Those events are called PMU hardware events or hardware events for short. 
They vary with each processor type and model. The perf_events interface also provides a small set of 
common hardware events monikers.  
On each processor, those events get mapped onto actual events provided by the CPU, if they exist, 
otherwise the event cannot be used. Somewhat confusingly, these are also called hardware events and 
hardware cache events. 
Finally, there are also tracepoint events which are implemented by the kernel ftrace infrastructure. 
Those are only available with the 2.6.3x and newer kernels. 
 
* To obtain a list of supported events type in perf list. 
 
<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-bash-4.2$ $ perf list 



Performance Measurements: Perf Tool 

4 

List of pre-defined events (to be used in -e): 

 

  branch-instructions OR branches                    [Hardware event] 

  branch-misses                                      [Hardware event] 

  bus-cycles                                         [Hardware event] 

  cache-misses                                       [Hardware event] 

  cache-references                                   [Hardware event] 

  cpu-cycles OR cycles                               [Hardware event] 

  instructions                                       [Hardware event] 

  ref-cycles                                         [Hardware event] 

 

  alignment-faults                                   [Software event] 

  bpf-output                                         [Software event] 

  context-switches OR cs                             [Software event] 

  cpu-clock                                          [Software event] 

  cpu-migrations OR migrations                       [Software event] 

  dummy                                              [Software event] 

  emulation-faults                                   [Software event] 

  major-faults                                       [Software event] 

  minor-faults                                       [Software event] 

  page-faults OR faults                              [Software event] 

  task-clock                                         [Software event] 

 

  L1-dcache-load-misses                              [Hardware cache event] 

  L1-dcache-loads                                    [Hardware cache event] 

  L1-dcache-stores                                   [Hardware cache event] 

  L1-icache-load-misses                              [Hardware cache event] 

  LLC-load-misses                                    [Hardware cache event] 

  LLC-loads                                          [Hardware cache event] 

  LLC-store-misses                                   [Hardware cache event] 

  LLC-stores                                         [Hardware cache event] 

  branch-load-misses                                 [Hardware cache event] 

  branch-loads                                       [Hardware cache event] 

  dTLB-load-misses                                   [Hardware cache event] 

  dTLB-loads                                         [Hardware cache event] 

  dTLB-store-misses                                  [Hardware cache event] 

  dTLB-stores                                        [Hardware cache event] 

  iTLB-load-misses                                   [Hardware cache event] 

  iTLB-loads                                         [Hardware cache event] 

  node-load-misses                                   [Hardware cache event] 

  node-loads                                         [Hardware cache event] 

  node-store-misses                                  [Hardware cache event] 

  node-stores                                        [Hardware cache event] 

 

  branch-instructions OR cpu/branch-instructions/    [Kernel PMU event] 

  branch-misses OR cpu/branch-misses/                [Kernel PMU event] 

  bus-cycles OR cpu/bus-cycles/                      [Kernel PMU event] 

  cache-misses OR cpu/cache-misses/                  [Kernel PMU event] 

  cache-references OR cpu/cache-references/          [Kernel PMU event] 

  cpu-cycles OR cpu/cpu-cycles/                      [Kernel PMU event] 

  cycles-ct OR cpu/cycles-ct/                        [Kernel PMU event] 

  cycles-t OR cpu/cycles-t/                          [Kernel PMU event] 

  el-abort OR cpu/el-abort/                          [Kernel PMU event] 

  el-capacity OR cpu/el-capacity/                    [Kernel PMU event] 

  el-commit OR cpu/el-commit/                        [Kernel PMU event] 

  el-conflict OR cpu/el-conflict/                    [Kernel PMU event] 

  el-start OR cpu/el-start/                          [Kernel PMU event] 

  instructions OR cpu/instructions/                  [Kernel PMU event] 

  intel_pt//                                         [Kernel PMU event] 

  mem-loads OR cpu/mem-loads/                        [Kernel PMU event] 

  mem-stores OR cpu/mem-stores/                      [Kernel PMU event] 

  msr/aperf/                                         [Kernel PMU event] 

  msr/mperf/                                         [Kernel PMU event] 



Performance Measurements: Perf Tool 

5 

  msr/pperf/                                         [Kernel PMU event] 

  msr/smi/                                           [Kernel PMU event] 

  msr/tsc/                                           [Kernel PMU event] 

  power/energy-cores/                                [Kernel PMU event] 

  power/energy-pkg/                                  [Kernel PMU event] 

  power/energy-ram/                                  [Kernel PMU event] 

  ref-cycles OR cpu/ref-cycles/                      [Kernel PMU event] 

  tx-abort OR cpu/tx-abort/                          [Kernel PMU event] 

  tx-capacity OR cpu/tx-capacity/                    [Kernel PMU event] 

  tx-commit OR cpu/tx-commit/                        [Kernel PMU event] 

  tx-conflict OR cpu/tx-conflict/                    [Kernel PMU event] 

  tx-start OR cpu/tx-start/                          [Kernel PMU event] 

  uncore_iio_free_running_0/bw_in_port0/             [Kernel PMU event] 

  uncore_iio_free_running_0/bw_in_port1/             [Kernel PMU event] 

  uncore_iio_free_running_0/bw_in_port2/             [Kernel PMU event] 

  uncore_iio_free_running_0/bw_in_port3/             [Kernel PMU event] 

  uncore_iio_free_running_0/bw_out_port0/            [Kernel PMU event] 

  uncore_iio_free_running_0/bw_out_port1/            [Kernel PMU event] 

  uncore_iio_free_running_0/bw_out_port2/            [Kernel PMU event] 

  uncore_iio_free_running_0/bw_out_port3/            [Kernel PMU event] 

  uncore_iio_free_running_0/ioclk/                   [Kernel PMU event] 

  uncore_iio_free_running_0/util_in_port1/           [Kernel PMU event] 

  uncore_iio_free_running_0/util_in_port2/           [Kernel PMU event] 

  uncore_iio_free_running_0/util_in_port3/           [Kernel PMU event] 

  uncore_iio_free_running_0/util_out_port0/          [Kernel PMU event] 

  uncore_iio_free_running_0/util_out_port1/          [Kernel PMU event] 

  uncore_iio_free_running_0/util_out_port2/          [Kernel PMU event] 

  uncore_iio_free_running_0/util_out_port3/          [Kernel PMU event] 

  . . . (list goes on and on, review it carefully) 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

4. Counting with perf stat

For any of the supported events, perf can keep a running count during process execution. In counting
modes, the occurrences of events are simply aggregated and presented on standard output at the end
of an application run.
To generate these statistics, use the stat command of perf. For instance:

* Perform perf stat on a program arrsum from the time measurement tutorial.

<<~~~

do the following if you have skipped the time measurement tutorial

-bash-4.2$ rm -rf exetimemeasure/

-bash-4.2$ cp -r /apps/arch/arch.tut/exetimemeasure/ .

-bash-4.2$ cd exetimemeasure/

-bash-4.2$ ls

arrsum.c arrsum_clock.c

-bash-4.2$ gcc -O2 arrsum.c -o arrsum.exe

-bash-4.2$ ls

arrsum.c arrsum_clock.c arrsum.exe

start from here if you already have the executables

-bash-4.2$ perf stat ./arrsum.exe 16384

array sum is 17488290749289

 Performance counter stats for './arrsum.exe 16384':

Performance Measurements: Perf Tool

6

 0.64 msec task-clock:u # 0.639 CPUs utilized

 0 context-switches:u # 0.000 K/sec

 0 cpu-migrations:u # 0.000 K/sec

 146 page-faults:u # 0.228 M/sec

 753,803 cycles:u # 1.178 GHz

 1,056,762 instructions:u # 1.40 insn per cycle

 299,367 branches:u # 467.849 M/sec

 2,093 branch-misses:u # 0.70% of all branches

 0.001001550 seconds time elapsed

 0.001088000 seconds user

 0.000000000 seconds sys

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

 
* With no events specified, perf stat collects the common events listed above.  
Some are software events, such as context-switches, others are generic hardware events such as cycles.  
After the hash sign, derived metrics may be presented, such as 'IPC' (instructions per cycle).  
Increase the size of the processed array to 32,768. Observe perf output. What changes do you notice? 
 
* We can specify specific events to monitor for both user and kernel level code (uk): 
 
<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-bash-4.2$ perf stat -e cycles:uk ./arrsum.exe 16384 

array sum is 17488294945123 

 

 Performance counter stats for './arrsum.exe 16384': 

 

           693,018      cycles:uku 

 

       0.000919692 seconds time elapsed 

 

       0.001185000 seconds user 

       0.000000000 seconds sys 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 


<<~~~

-bash-4.2$ perf stat -e cycles:u ./arrsum.exe 16384

array sum is 17488294945123

 Performance counter stats for './arrsum.exe 16384':

 663,946 cycles:u

 0.000908855 seconds time elapsed

 0.001163000 seconds user

 0.000000000 seconds sys

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

 
 
* It is possible to use perf stat to run the same test workload multiple times and get for each count, the 
standard deviation from the mean. 
 
<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-bash-4.2$ perf stat -r 5 -e cycles ./arrsum.exe 16384 

array sum is 17488294945123 

array sum is 17488294945123 



Performance Measurements: Perf Tool 

7 

array sum is 17488294945123 

array sum is 17488294945123 

array sum is 17488294945123 

 

 Performance counter stats for './arrsum.exe 16384' (5 runs): 

 

           670,888      cycles:u                                                      

( +-  2.12% ) 

 

         0.0008779 +- 0.0000299 seconds time elapsed  ( +-  3.41% ) 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

5. Sampling with perf record

The perf tool can be used to collect profiles on per-thread, per-process and per-cpu basis.
There are several commands associated with sampling: record, report, annotate.
You must first collect the samples using perf record. This generates an output file called perf.data.
That file can then be analyzed, possibly on another machine, using the perf report and perf annotate
commands.
The model is fairly similar to that of OProfile.

<<~~~

-bash-4.2$ perf record ./arrsum.exe 16384

array sum is 17488294945123

[perf record: Woken up 1 times to write data]

[perf record: Captured and wrote 0.002 MB perf.data (9 samples)]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

6. Sample analysis with perf report 
 
Samples collected by perf record are saved into a binary file called, by default, perf.data. The perf report 
command reads this file and generates a concise execution profile. By default, samples are sorted by 
functions with the most samples first. It is possible to customize the sorting order and therefore to view 
the data differently. 
 
<<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-bash-4.2$ perf report 

 

Samples: 9  of event 'cycles:uppp', Event count (approx.): 993651 

Overhead  Command     Shared Object     Symbol 

  42.58%  arrsum.exe  libc-2.17.so      [.] __random 

  41.63%  arrsum.exe  ld-2.17.so        [.] check_match.9525 

  14.65%  arrsum.exe  ld-2.17.so        [.] _dl_sysdep_start 

   1.14%  arrsum.exe  [unknown]         [k] 0xffffffff8518a4ef 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 


The column 'Overhead' indicates the percentage of the overall samples collected in the corresponding
function.
The second column reports the process from which the samples were collected.

Performance Measurements: Perf Tool

8

In per-thread/per-process mode, this is always the name of the monitored command.
But in cpu-wide mode, the command can vary.
The third column shows the name of the ELF image where the samples came from.
If a program is dynamically linked, then this may show the name of a shared library.
When the samples come from the kernel, then the pseudo ELF image name [kernel.kallsyms] is used.
The fourth column indicates the privilege level at which the sample was taken,
i.e. when the program was running when it was interrupted:
[.] : user level
[k]: kernel level
[g]: guest kernel level (virtualization)
[u]: guest os user space
[H]: hypervisor
The final column shows the symbol name.

<<~~~

-bash-4.2$ $ perf report --sort comm,dso

amples: 10 of event 'cycles:uppp', Event count (approx.): 988532

Overhead Command Shared Object

 59.85% arrsum.exe libc-2.17.so

 39.28% arrsum.exe ld-2.17.so

 0.87% arrsum.exe [unknown]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 

7. Source level analysis with perf annotate 
 
It is possible to drill down to the instruction level with perf annotate. For that, you need to invoke perf 
annotate with the name of the command to annotate. Perf annotate can generate source code level 
information if the application is compiled with -ggdb.  
 


